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Camera-trapping surveys, in combination with traditional capture–recapture or spatially explicit capture–

recapture techniques, have become popular for estimating the density of individually identifiable carnivores.

When only a portion of the population is uniquely identifiable, traditional and spatial mark–resight models

provide a viable alternative. We reanalyzed a data set that used photographic capture–recapture methods to

estimate the densities of pumas (Puma concolor) across 3 study sites in Belize, Argentina, and Bolivia using

newer, more-advanced modeling including spatial and nonspatial mark–resight techniques. Additionally, we

assessed how photo identification influenced density estimates by comparing estimates based on capture histories

constructed by 3 independent investigators. We estimated the abundances of pumas using mark–resight models

in program MARK and then estimated densities ad hoc. We also estimated densities directly using spatial mark–

resight models implemented in a Bayesian framework. Puma densities did not vary substantially among

observers but estimates generated from the 3 statistical techniques did differ. Density estimates (pumas/100 km2)

from spatial mark–resight models were lower (0.22–7.92) and had increased precision compared to those from

nonspatial capture–recapture (0.50–19.35) and mark–resight techniques (0.54–14.70). Our study is the 1st to

estimate the density of a population of carnivores, where only a subset of the individuals are naturally marked,

using camera-trapping surveys in combination with spatial mark–resight models. The development of spatial

mark–resight and spatially explicit capture–recapture techniques creates the potential for using a single camera-

trapping array to estimate the density of multiple, sympatric carnivores, including both partially marked and

uniquely marked species.
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Effective conservation depends on accurate knowledge of

the distributions and densities of wildlife populations. Camera-

trapping surveys, in combination with traditional capture–

recapture techniques (Otis et al. 1978; Williams et al. 2002),

have been used around the world to estimate the abundance

and density of individually identifiable carnivores, including

jaguars (Panthera onca—Kelly 2003; Maffei et al. 2004; Silver

et al. 2004) and tigers (Panthera tigris—Karanth and Nichols

1998; Kawanishi and Sunquist 2004). Capture–recapture

methods are considered a robust way to estimate demographic

w w w . m a m m a l o g y . o r g

382

http://www.mammalogy.org


parameters of wildlife populations and camera-trapping

surveys have become an increasingly common, noninvasive

method for sampling wildlife over large areas. Density is

generally the parameter of interest because it is needed to

compare estimates across space, particularly when comparing

sites that have different survey areas. Several limitations,

however, constrain traditional photographic capture–recapture

techniques. The 1st is that in order to estimate density, we need

to know the area from which animals are sampled, which is

generally unknown (Royle et al. 2009; O’Brien and Kinnaird

2011). Density is therefore estimated ad hoc, typically by

adding a buffer area around the trap array (Wilson and

Anderson 1985; Karanth and Nichols 1998; Parmenter et al.

2003). Methods to define the width of that buffer vary; thus,

the precise definition of the effective trapping area is generally

uncertain (Borchers and Efford 2008; O’Brien and Kinnaird

2011) and density estimates are somewhat arbitrary. A 2nd

limitation is that the spatial component of camera-trapping data

is not directly incorporated into traditional capture–recapture

analyses (Gopalaswamy et al. 2012). The location of camera

traps is important because an individual’s probability of being

photographed depends on the overlap of its home range with

the trap array (Efford 2004; Royle et al. 2009). A final

limitation of photographic capture–recapture techniques is that

the species must be identifiable to the individual level using

natural markings, thus restricting sampling to species with

unique pelage patterns.

Spatially explicit capture–recapture (SECR) models (Efford

2004; Borchers and Efford 2008; Royle et al. 2009) were

developed to address several of the limitations of traditional

capture–recapture techniques. In SECR modeling, a hierarchi-

cal model is implemented to estimate animal density directly.

The probability of being photographed is modeled as a function

of the distance between camera-trap locations and an animal’s

activity center, and density is estimated using a point process

model (Efford 2004; Royle et al. 2009). The location of activity

centers is unknown, but the spatial coordinates of the traps

where individual animals were photographed provide some

information about this location (Borchers and Efford 2008;

Royle et al. 2009). In practical terms, SECR methods also may

be advantageous over nonspatial methods because their

performance depends less on the spatial setup of the camera

stations (Noss et al. 2012; Sollmann et al. 2012). Thus, with

SECR modeling, a standardized trapping design can be used to

estimate the density of a single species or multiple, sympatric

species (O’Brien and Kinnaird 2011). SECR models, however,

still require that all photographed animals be uniquely

identifiable.

Mark–resight models (Arnason et al. 1991;White and Shenk

2001; McClintock et al. 2009), on the other hand, provide a

viable alternative to spatial and nonspatial capture–recapture

techniques when only a subset of the animals is uniquely

identifiable either by artificial tagging (e.g., radiocollar or ear

tag) or subtle, natural marks (e.g., scars or color patterns on

legs). Photographic mark–resight techniques estimate abun-

dance by incorporating photographs of marked (i.e., uniquely

identifiable individuals), unmarked (i.e., individuals only

identifiable to the species level), and marked but not

identifiable individuals (McClintock et al. 2009; McClintock

2012). The last classification occurs when an investigator

determines that a photo is of a marked individual but cannot

unambiguously identify the individual; this may occur, for

example, if a photo only includes part of an animal. Mark–

resight techniques assume the subset of marked individuals is

representative of the entire population in terms of sighting

probabilities (McClintock et al. 2009; McClintock 2012).

Mark–resight models also share several of the limitations of

traditional capture–recapture techniques, however, including

ad hoc estimation of density and not directly incorporating the

spatial component of the camera-trapping data.

Spatial mark–resight (SMR) models were recently devel-

oped (Chandler and Royle 2013; Sollmann et al. 2013a, 2013b)

to address these limitations. SMR techniques are an SECR

framework for populations where only some of the individuals

can be identified. The main difference between SMR and

SECR models is that SMR encounter histories are partially

latent because only part of the population is uniquely

identifiable (Sollmann et al. 2013a, 2013b).

Spatial mark–resight models, in combination with camera-

trapping surveys, offer a promising tool for estimating densities

of pumas (Puma concolor), an elusive carnivore with uniform,

light coloration. Generally, when using photographic records,

only a portion of a puma population is unambiguously

identifiable to the individual level via scars, ear nicks, and

distinctive undercoat marks, thus restricting the use of spatial

and nonspatial capture–recapture techniques. Additionally,

similar to many large carnivores, pumas generally live at low

densities, are nocturnal, and are difficult to observe (Schone-

wald-Cox et al. 1991; Gros et al. 1996; Mills 1996; Silver et al.

2004; Sollmann et al. 2013b). These characteristics make

pumas extremely difficult to physically capture and restrict the

use of artificial tagging due to time, budget, and logistical

constraints (Potvin et al. 2005). Use of camera traps and the use

of natural markings are a time- and cost-effective alternative

(Sollmann et al. 2012) because camera traps generally have

high detection rates (O’Connell et al. 2006). The challenges

associated with monitoring pumas have resulted in their

population status remaining relatively unknown throughout

most of their range south of the United States (Sunquist and

Sunquist 2002). They are perceived, however, to be decreasing

in numbers throughout most of their range due to prey loss,

habitat loss, and habitat fragmentation (Kelly et al. 2008). A

standardized method for estimating puma distributions and

densities is needed to monitor these perceived population

declines and, if necessary, to enact effective conservation

measures.

The overall goal of our study was to reanalyze a data set that

used traditional capture–recapture methods to estimate the

densities of pumas across 3 study sites in Belize, Argentina,

and Bolivia (Kelly et al. 2008), using newer, more advanced

modeling including mark–resight and recently developed SMR

techniques. Our 3 main objectives were to estimate the
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abundances and densities of pumas using nonspatial mark–

resight models; estimate the densities of pumas using SMR

models; and compare density and standard error estimates from

capture–recapture (see Kelly et al. 2008), mark–resight, and

SMR modeling techniques. A complementary objective was to

assess how photo identification influenced density estimates by

comparing estimates based on capture histories constructed by

3 independent investigators using the same data sets.

MATERIALS AND METHODS

Study areas.—We conducted camera-trapping surveys in

Belize, Argentina, and Bolivia (see Kelly et al. 2008 for

details). In Belize, we deployed camera-trap stations in the

Chiquibul Forest Reserve and National Park (1,744 km2;

168440N, 888590W), which was the largest managed forest

reserve in Belize. The vegetation included broadleaf rain forest,

deciduous semievergreen and seasonal forest, and stands of

pine in the north. In Argentina, we deployed camera-trap

stations in the Yabotı́ Biosphere Reserve (2,742 km2; 268550S,

548000W) in the southeastern portion of the Green Corridor of

Misiones Province. The area had a humid subtropical climate

and most forests had been logged, thus promoting the invasion

of 2 species of bamboo. Lastly, in Bolivia, we deployed

camera-trap stations in the Kaa-Iya del Gran Chaco National

Park (34,400 km2; 188250S, 618460W) located in the northern

end of the Gran Chaco. This area included the largest

remaining area of Chaco dry forest and the thick underbrush

was dominated by bromeliads and cacti.

Camera-trapping surveys and photo classification.—We

deployed 17, 42, and 22 camera stations in Belize, Argentina,

and Bolivia, respectively, at regular intervals of 2–3 km in a

grid across the respective landscapes. At each station, we

placed 2 cameras opposite of each other on both sides of the

road or trail. We programmed cameras to operate 24 h/day with

a camera delay of 30 s to 5 min. The primary sampling

intervals lasted from 4 January to 9 April 2003 in Belize, 27

August to 30 November 2005 in Argentina, and 28 October to

24 December 2005 in Bolivia (see Kelly et al. 2008 for details).

We selected 3 investigators and had each investigator

classify photographs of pumas from the 3 study sites, unaware

of how the others had identified and categorized the

photographs. Investigators identified individual pumas by

obvious and subtle markings (e.g., kinked tails, scars, ear

nicks, tail-tip coloration and shape, or undercoat spot patterns).

Each investigator labeled photographs of pumas with either the

individual’s identification, as marked but not unambiguously

identifiable, or unmarked.

Abundances and densities of pumas: capture–recapture
models.—Kelly et al. (2008) created capture histories for each

investigator at each study site (i.e., 9 capture histories total) and

used program CAPTURE (Otis et al. 1978; Rexstad and

Burnham 1991) to estimate abundances of pumas across study

sites and by different investigators. To determine the size of the

areas surveyed, Kelly et al. (2008) buffered each camera-trap

location with half of the mean maximum distance moved (½

MMDM—Wilson and Anderson 1985). Kelly et al. (2008)

then estimated the densities of pumas by dividing abundance

estimates by survey area estimates; standard errors were

estimated using the delta method described in Nichols and

Karanth (2002).

Abundances and densities of pumas: mark–resight
models.—We constructed encounter histories of individual

pumas for each of the investigators and each study site (i.e., 9

capture histories in total). When implementing photographic

mark–resight models in program MARK (McClintock 2012),

encounter histories contained the count of the total number of

times an individual was resighted during the primary sampling

interval (i.e., primary sampling interval is not divided into

multiple sampling occasions). If an individual puma was

photographed 6 times during the primary sampling interval, for

example, its encounter history was 06. The encounter histories

also included an overall count of the number of photographs

where pumas were classified as unmarked or as marked but not

identifiable. Counts of unmarked individuals are used to inform

detection parameters and the proportion of marked but not

identifiable photos per known individual is used as a correction

factor for the encounter rates of marked individuals. Lastly, we

identified the number of marked pumas as unknown. We also

constructed a capture history for each study site by combining

identifications made by all of the investigators. We labeled a

photograph with the individual’s identification if all

investigators agreed upon the identification. We labeled an

individual as marked but not unambiguously identifiable if all

investigators identified the photo as a marked individual but

did not agree on the individual identification, and finally we

labeled an individual as unmarked if � 1 investigator identified

the photo as unmarked.

We used the zero-truncated Poisson–log-normal mark–

resight model in program MARK because marked individuals

could not have all-zero encounter histories (i.e., had to be

photographed � 1 time to be known—McClintock et al. 2009;

McClintock 2012). Because we only had 1 primary sampling

interval, we used the closed resighting model, which included 3

parameters: intercept for mean resighting rate (a), individual

heterogeneity (r), and number of unmarked individuals in the

population (U). For each of the countries, and for each

investigator separately and combined, we ran 1 model where

the parameters were constant and 1 model with r¼0 to test for

individual heterogeneity. We evaluated the candidate models

using Akaike’s information criterion corrected for small sample

size (AICc—Burnham and Anderson 2002) and used the top-

ranked model to derive an estimate of total population size (N)

and overall mean resighting rate (k).

We estimated the size of the surveyed area in each country

using capture histories created by the investigators separately

and combined; we only used data from individually identifiable

pumas that were detected at � 2 camera stations. We used ½

MMDM as a buffer radius around each camera-trap location

(Wilson and Anderson 1985). We dissolved ½ MMDM buffers

and calculated total surveyed area (km2) in ArcGIS version

10.0 (Environmental Systems Research Institute, Inc. 2012).
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We used ½ MMDM as the buffer radius so that our estimates

would be comparable to those of Kelly et al. (2008). We

divided estimates of the number of pumas by the corresponding

estimate of the total survey area to obtain country- and

investigator-specific estimates of puma density. Analogous to

capture–recapture techniques, we calculated standard errors for

the density estimates following the delta method.

Densities of pumas: SMR models.—We collapsed daily

camera-trapping data into blocks such that 1 encounter

occasion consisted of a 5-day sampling period. We collapsed

the data in this manner because photographic detections of

pumas were sparse and we wanted to avoid estimated detection

rates close to 0, because this can sometimes lead to estimation

problems. We then created capture histories for each

investigator separately and combined at each study site (i.e.,

12 capture histories in total). For photographs of individually

identifiable pumas, capture histories included the individual

identification, camera-trap station identification, and encounter

occasion. For photographs of unmarked pumas, capture

histories included an accumulated count of the number of

times unmarked pumas were photographed at each camera-trap

station during each encounter occasion. For photographs of

marked but unidentifiable pumas, capture histories included a

total count (across stations and encounter occasions). We also

created an input file with the Universal Transverse Mercator

coordinates of each camera-trap station as well as data on the

number of days each camera-trap station was active during

each encounter occasion (i.e., accounting for malfunctions or

cameras set up and taken down on different days).

We implemented SMR models using the software R version

2.15.1 (R Development Core Team 2012). Similar to SECR

models, we assumed each individual i had an activity center, si,

and that all of the activity centers were distributed uniformly

across the state space S (Royle et al. 2009). The state space is

an area large enough to include the activity centers of all

animals potentially exposed to trapping. To define S, we used a

27-km buffer in Belize, a 27-km buffer in Argentina, and a 10-

km buffer in Bolivia from the outermost coordinates of the

trapping grids. This resulted in an area for S of 5,002, 7,029,

and 957 km2 in Belize, Argentina, and Bolivia, respectively.

We used a smaller buffer in Bolivia because puma movement

in Bolivia was more restricted, which was likely an artifact of

the camera-trapping grid being much smaller in Bolivia (51

km2) than the grids in Belize (110 km2) and Argentina (549

km2—Kelly et al. 2008).

For the marked pumas, we assumed they were a random

sample from the population of pumas in the state space. This

assumption is problematic when relying on artificial marks, but

should be valid when using natural marks, as in the present

study (Sollmann et al. 2013b; Royle et al. 2014). We further

assumed that the number of photographs of puma i at camera

station j during encounter occasion k, yijk, was a Poisson

random variable with mean encounter rate kijk. We modeled the

mean encounter rate using a half-normal decreasing function of

the distance from trap j to the individual’s activity center,

dependent on k0 (i.e., encounter rate for a hypothetical camera

trap located on si) and s (i.e., scale parameter of this half-

normal function, which is related to animal movement—Royle

et al. 2009). The scale parameter is generally represented by r;

we changed the symbol to s to avoid confusion with the

traditional mark–resight models where r represents individual

heterogeneity. We assumed that k0 and s were constant across

encounter occasions.

For photographs of marked but unidentifiable pumas (e.g.,

photo only included the front half of a puma), we assumed that

the inability to identify marked individuals occurred at random

throughout the population and space (Sollmann et al. 2013a).

To incorporate these photos, we estimated the probability of

correctly identifying a photo of a marked puma. We assumed

the sum of all correctly identified photos of marked individuals

was a binomial random variable with sample size equal to the

total number of records of marked individuals, and probability

c (Sollmann et al. 2013a). For marked pumas, we then

multiplied k0 by c to account for the fact that we observed

incomplete individual encounter histories (Sollmann et al.

2013a).

We estimated the number of marked and unmarked pumas

using data augmentation (Royle and Dorazio 2012). For the

unmarked pumas, encounter histories are latent (all we

observed were accumulated counts of unmarked individuals)

and thus, essentially, missing data (Sollmann et al. 2013a).

Following Sollmann et al. (2013a), we adopted a Bayesian

framework and used Metropolis-within-Gibbs Markov chain

Monte Carlo sampling to update missing data using their full

conditional distribution. For each investigator separately and

combined, and for each study site, we ran 3 chains of the

Metropolis-within-Gibbs sampler with 200,000 iterations each,

discarding 10,000 iterations as burn-in. We checked for chain

convergence by calculating the Gelman–Rubin statistic R-hat

(Gelman et al. 2004) using the R package coda (Plummer et al.

2006); values , 1.1 indicated chain convergence. We report

results as posterior mean with standard error (defined as the

standard deviation of the posterior distribution of a parameter)

and 2.5 and 97.5 percentiles, which represent the Bayesian

equivalent to a confidence interval. For density estimates we

report the mode over the mean because simulations have

shown the mode to be less biased than the mean with low

sample sizes (Chandler and Royle 2013; Sollmann et al.

2013b).

Comparing density estimates among investigators and
modeling techniques.—When comparing density estimates

among investigators and among modeling techniques, we

considered estimates to be different if the 95% confidence

intervals (95% CIs) did not overlap.

RESULTS

Camera-trapping surveys and photo classification.—The

durations of the camera-trapping surveys were 95 days in

Belize, 96 days in Argentina, and 56 days in Bolivia. We

photographed pumas 48, 65, and 35 times, which translated to

3.00, 2.41, and 2.84 photographs of pumas per 100 trap nights
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in Belize, Argentina, and Bolivia, respectively (Kelly et al.

2008).

The majority of photographs of pumas were labeled with an

individual identification (Table 1). When classifications among

the 3 investigators were combined, the number of photographs

labeled with an individual identification decreased and the

number of photographs labeled as marked but not identifiable

or unmarked increased (Table 1). Investigator 3 was generally

the most conservative (i.e., classifying more photos as marked

but not identifiable or unmarked) and investigator 2 was

generally the least conservative (Table 1).

Abundances and densities of pumas: capture–recapture
models.—Estimates of puma abundance from capture–

recapture models ranged from 6 to 18 and density of pumas

per 100 km2 ranged from 0.5 to 19 (Fig. 1; Kelly et al. 2008).

Abundances and densities of pumas: mark–resight
models.—Models that allowed for individual heterogeneity

had the most support (i.e., lower AICc values) when using

capture histories constructed by each investigator separately

(Table 2). Conversely, when using the combined capture

histories, models without individual heterogeneity had the most

support (Table 2). We used the top-ranked models to estimate

abundance and density for each study population. Estimates of

abundance were greatest in Bolivia and smallest in Argentina

(Table 2). In each case, values estimated by the mark–resight

models were lower than those estimated using capture–

recapture models.

Half of the mean maximum distance moved among cameras

by individual pumas, calculated using capture histories

constructed by each investigator separately and combined,

were considerably higher in Belize and Argentina (5–9 km) as

compared to Bolivia (2 km [Table 3]). In turn, densities of

pumas per 100 km2 were several times lower (0.5–2.0) in

Belize and Argentina, versus in Bolivia (Table 3).

Densities of pumas: SMR models.—Capture histories created

for SMR models had 19, 19, and 12 five-day encounter

occasions in Belize, Argentina, and Bolivia, respectively.

Estimates of density were again much lower in Belize and

Argentina (0.2–1 pumas/100 km2) than in Bolivia (3–8 pumas/

100 km2 [Table 4]). Estimates of baseline encounter rates (k0)

were higher in Belize and Argentina than it was in Bolivia, and

a photo of a marked puma was more likely to be identified (c)

in Argentina and Bolivia than in Belize (Table 4). The posterior

mean for s (i.e., scale parameter) was higher in Belize and

Argentina than it was in Bolivia (Table 4). All parallel Markov

chains appeared to converge (Gelman–Rubin statistic R-hat for

all parameters , 1.1).

Comparing density estimates among investigators and
modeling techniques.—Density estimates among the

investigators were similar (i.e., overlapping 95% CIs [Fig.

1]). Density estimates from capture–recapture models were

generally the highest and density estimates from SMR models

were generally the lowest (Fig. 1). However, when comparing

95% CIs we found no support that estimates generated from the

3 types of models were different (i.e., overlapping 95% CIs)

with the exception of Belize, where estimates from

investigators 1 and 2 were lower when generated from SMR

models (Fig. 1). The 95% CIs were generally the largest when

using capture–recapture models and the smallest when using

SMR models (Fig. 1).

DISCUSSION

Estimating the densities of large carnivores is challenging

because they are generally wide ranging, elusive, and occur at

low densities. The task is particularly challenging with species

that have uniform coloration (e.g., pumas) because individuals

often cannot be identified by distinct pelage patterns, thus

limiting the use of photographic capture–recapture (Otis et al.

1978; Karanth and Nichols 1998) and recently developed

SECR techniques (Borchers and Efford 2008; Royle et al.

2009). We reanalyzed a camera-trapping data set that used

traditional capture–recapture methods to estimate the densities

of pumas across 3 study sites in Belize, Argentina, and Bolivia

(Kelly et al. 2008), using mark–resight and SMR techniques.

We showed that standardized camera trapping, in combination

with SMR techniques, is a feasible method for obtaining robust

demographic estimates for pumas across their geographic

range.

Density estimates from SMR models were lower than those

from nonspatial (i.e., capture–recapture and mark–resight)

techniques. Similar results have been found when comparing

SECR models to nonspatial models, suggesting that statistical

techniques relying on ad hoc estimation of density (i.e., using

estimates of ½ MMDM to estimate survey areas) may result in

overestimates (Gerber et al. 2012; Noss et al. 2012; Blanc et al.

2013), likely because they do not fully account for animal

movement off the sampling grid. We also found that precision

improved when employing mark–resight models, spatial or

TABLE 1.—The number of pumas (Puma concolor) identified to the

individual level (n*) and the total numbers of puma photographs that

were labeled as individually identifiable, marked but not unambigu-

ously identifiable, and unmarked. Classifications were made by 3

independent investigators, separately and combined.

n*

Individually

identifiable

Marked

but not

identifiable Unmarked

Belize

Investigator 1 8 42 6 0

Investigator 2 11 42 4 2

Investigator 3 11 40 1 7

Combined 6 27 13 8

Argentina

Investigator 1 6 53 2 10

Investigator 2 6 60 0 5

Investigator 3 7 58 2 5

Combined 5 47 8 10

Bolivia

Investigator 1 11 32 0 2

Investigator 2 13 33 1 0

Investigator 3 14 32 0 2

Combined 11 30 2 2
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nonspatial, likely because these models used data from marked,

unmarked, and marked but not identifiable pumas, whereas the

capture–recapture models only used data from the individually

identifiable pumas. Discarding photographs from marked but

unidentifiable and unmarked pumas resulted in a substantial

loss of data (Table 1), particularly because data sets were

sparse to begin with. Similarly, simulations showed that in a

SMR framework, parameter estimates based on marked and

unmarked individuals were less biased and more precise than

parameter estimates based on marked individuals only (Royle

et al. 2014).

Estimates of puma density from SMR techniques were the

lowest; however, estimates among the 3 statistical techniques

were generally comparable (i.e., overlapping 95% CIs). This

was the result of all density estimates having relatively large

standard errors. Standard error estimates were likely large

because of our limited data sets, which included a small

number of naturally marked pumas, a limited amount of

resighting data, and in 1 case a small camera-trapping array. In

Bolivia, for example, we had an average of 2.6 resighting

events per puma and the minimum convex polygon around the

camera traps was 51 km2 (Kelly et al. 2008). Camera stations

that are spaced too widely can result in few spatial recaptures

and cause SMR (or SECR) models to perform poorly

(Sollmann et al. 2012; Chandler and Royle 2013). Because

cameras were spaced on average 2.5 km apart, which was less

than or approximately equal to our estimate of s, we attributed

our limited number of resighting events to pumas being rare

and elusive, which is also reflected in low estimates of baseline

encounter probability (spatial models) and detection probabil-

ity (nonspatial models). Regardless of statistical technique,

results followed the same trends with highest density estimates

for Bolivia, intermediate for Belize, and lowest for Argentina.

Spatial mark–resight models address many of the limitations

of traditional capture–recapture and mark–resight models but

they still include 2 potentially problematic assumptions:

marked individuals are a random sample from the study

population, both demographically and spatially; and if marked

individuals are not always identified to the individual level,

failure to identify marked individuals occurs at random in

space and time and throughout the population (White and

Shenk 2001; McClintock et al. 2009; Sollmann et al. 2013a).

The 1st assumption may have been violated if, for some reason,

our naturally marked pumas had a higher probability of being

photographed. This may have occurred, for example, if males,

on average, were more likely to be marked than females (e.g.,

via scars) and were more active than females, thus increasing

their probability of being photographed. This could be

addressed explicitly within the model if animals could be

sexed. It also is possible that we violated the 2nd assumption

because some of the pumas had more obvious, easy to identify

natural markings than others. In the future, it may be possible

to directly address this potential bias in the model by allowing

different markings (i.e., subtly versus obviously marked

pumas) to have different identification rates. Similarly, if

habitat conditions at the camera stations influenced puma

FIG. 1.—Estimated density of pumas (Puma concolor), and the

associated 95% confidence intervals, generated from camera-trapping

surveys in A) Belize, B) Argentina, and C) Bolivia. Estimates were

generated from capture histories constructed by 3 independent

investigators from the same data sets, and for mark–resight models

from the 3 investigators combined.
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identification then c could be modeled as a function of habitat

covariates (Sollmann et al. 2013b).

Mark–resight models also assume there is no loss or

misidentification of marks (McClintock et al. 2009). Estimates

of puma density were, to some degree, dependent on the

investigator who classified the photos, which suggests that this

assumption was possibly violated. In our study, pumas were

identified to the individual level using obvious (e.g., scar or ear

nick) and subtle (e.g., undercoat spot pattern or body shape and

carriage) natural marks; thus, correctly identifying pumas

required extreme attention to detail. An investigator seeking to

be cautious would have been more inclined to classify a photo

as unmarked or marked but not identifiable. Alternatively, an

investigator who was extremely confident in his or her ability

to distinguish individuals may not have classified any photos as

unmarked. Both of these alternatives could bias model results.

When using traditional mark–resight models, the classification

of photos has a 2-fold impact on estimates of density,

influencing both the estimates of abundance and effective

survey area (i.e., ½ MMDM). Differences among investigator

classifications for the Belize data set, for example, resulted in

estimates of abundance varying by 3 pumas (8 versus 11, an

38% increase) and estimates of the survey area by 231 km2

(611 versus 842, a 38% increase). When using SMR models,

the classification of photos influences the inferred locations of

TABLE 2.—Candidate models to estimate the abundance (N) and overall mean resighting rate (k) of pumas (Puma concolor) sampled in Belize,

Argentina, and Bolivia. Abundance was estimated using photographic mark–resight analysis (program MARK) and capture histories constructed

by 3 investigators. AICc ¼ Akaike’s information criterion with small sample size; DAICc ¼ differences in AICc; Log(l) ¼ maximized log-

likelihood; K ¼ number of estimable parameters; xi ¼ Akaike weights; n* ¼ total number of marked pumas resighted.

Model definitiona AICc DAICc Log(l) K xi n* N (SE) k (SE)

Belize

Investigator 1 a(.)r(.)U(.) 45.97 0.00 39.97 2 1.00 8 8.1 (0.05) 5.9 (1.11)

a(.)r(0)U(.) 61.52 15.55 58.94 1 0.00 8.0 (0.04) 6.0 (0.82)

Investigator 2 a(.)r(.)U(.) 58.29 0.00 49.29 3 1.00 11 12.6 (1.36) 2.5 (0.86)

a(.)r(0)U(.) 80.52 22.23 75.19 2 0.00 11.6 (0.33) 4.1 (0.61)

Investigator 3 a(.)r(.)U(.) 60.48 0.00 51.48 3 1.00 11 12.2 (1.32) 3.6 (1.02)

a(.)r(0)U(.) 69.45 8.97 64.12 2 0.00 13.1 (0.84) 3.6 (0.59)

Combined a(.)r(0)U(.) 46.75 0.00 39.75 2 0.56 6 7.2 (0.46) 7.7 (0.90)

a(.)r(.)U(.) 47.27 0.51 33.27 3 0.44 7.1 (0.88) 6.4 (1.59)

Argentina

Investigator 1 a(.)r(.)U(.) 56.90 0.00 42.90 3 1.00 6 6.6 (0.66) 8.2 (1.69)

a(.)r(0)U(.) 68.14 11.24 61.14 2 0.00 7.0 (0.36) 9.2 (1.21)

Investigator 2 a(.)r(.)U(.) 56.03 0.00 42.03 3 0.94 6 6.3 (0.27) 9.8 (2.16)

a(.)r(0)U(.) 61.32 5.29 54.32 2 0.06 6.5 (0.21) 10.0 (1.29)

Investigator 3 a(.)r(.)U(.) 57.28 0.00 45.28 3 0.96 7 7.3 (0.34) 8.9 (2.06)

a(.)r(0)U(.) 63.85 6.57 57.45 2 0.04 7.5 (0.25) 8.6 (1.09)

Combined a(.)r(0)U(.) 52.70 0.00 44.70 2 0.62 5 5.9 (0.29) 11.0 (1.36)

a(.)r(.)U(.) 53.71 1.01 35.71 3 0.38 5.7 (0.52) 10.8 (2.30)

Bolivia

Investigator 1 a(.)r(.)U(.) 53.57 0.00 44.57 3 0.79 11 12.3 (1.26) 2.7 (0.92)

a(.)r(0)U(.) 56.25 2.68 50.92 2 0.21 12.7 (0.82) 2.7 (0.53)

Investigator 2 a(.)r(.)U(.) 54.27 0.00 45.87 3 0.59 13 14.8 (1.46) 2.2 (0.73)

a(.)r(0)U(.) 54.97 0.70 49.88 2 0.41 14.7 (0.84) 2.4 (0.46)

Investigator 3 a(.)r(.)U(.) 54.37 0.00 46.19 3 0.78 14 16.9 (2.35) 1.9 (0.69)

a(.)r(0)U(.) 56.85 2.47 51.85 2 0.22 17.0 (1.37) 2.0 (0.43)

Combined a(.)r(0)U(.) 51.54 0.00 46.20 2 0.57 11 12.9 (0.91) 2.7 (0.53)

a(.)r(.)U(.) 52.13 0.59 43.13 3 0.43 12.8 (1.49) 2.5 (0.81)

a a ¼ mean resighting rate; r ¼ individual heterogeneity level; U ¼ number of unmarked individuals; (.) ¼ parameter constant; (0) ¼ parameter set to 0.

TABLE 3.—Estimated density of pumas (Puma concolor) in Belize,

Argentina, and Bolivia from 3 independent investigators. Density was

estimated post hoc using abundance estimates from a photographic

mark–resight (program MARK) analysis, and effective survey areas

were estimated using half the mean maximum distance moved (½

MMDM).

½ MMDM

(km)

Effective

survey area

(km2)

Density (SE)

per 100 km2

Belize

Investigator 1 8.70 808 1.00 (0.19)

Investigator 2 8.99 842 1.50 (0.23)

Investigator 3 6.92 611 2.00 (0.38)

Combined 5.92 506 1.42 (0.45)

Argentina

Investigator 1 7.04 1,215 0.54 (0.18)

Investigator 2 6.20 1,092 0.58 (0.16)

Investigator 3 6.35 1,114 0.66 (0.13)

Combined 5.46 986 0.60 (0.18)

Bolivia

Investigator 1 2.07 128 9.61 (3.17)

Investigator 2 1.79 112 13.21 (3.13)

Investigator 3 1.85 115 14.70 (4.32)

Combined 1.85 115 11.22 (3.01)
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activity centers and in turn, k0 and s. This resulted in estimates

of density varying by 5 pumas/100 km2 (4 versus 9 pumas/100

km2, a 125% increase) in Bolivia. Similar to Kelly et al.

(2008), we suggest that 2 or 3 investigators conduct blind

identifications of puma photographs so results can be compared

to check for disagreements. Disagreements can be categorized

as marked, but unidentifiable. This is perhaps conservative, but

a better approach than using single investigator opinions. In

this way, capture histories can build on the combined

investigator approach to create 1 set of final input data.

Knowledge of the densities of wildlife populations is crucial

to their management and conservation. Herein, we present

advancements in modeling techniques that go beyond tradi-

tional, problematic capture–recapture techniques and result in

more precise density estimates. Our study is the 1st to estimate

the density of a population of carnivores, where only a subset

of the individuals are naturally marked, using camera-trapping

surveys in combination with SMR models. This method is

ideal for uniformly colored, elusive carnivores with some

naturally distinguishing marks, because it does not require the

physical capture of individuals nor does it require the species to

be completely individually identifiable. The development of

SMR and SECR techniques creates the potential for using a

single camera-trapping array to estimate the density of

multiple, sympatric carnivores because both techniques are

less sensitive to the spatial setup of the camera stations than are

traditional nonspatial methods (Noss et al. 2012; Sollmann et

al. 2012). The density of individually identifiable carnivore

species can be estimated using SECR techniques and the

density of carnivore species where only a portion of the

population is individually identifiable can be estimated using

SMR techniques. For species where no animals can be

identified to the individual level, the methods of Chandler

and Royle (2013) may be applied. Developing monitoring

programs that address the densities of multiple, sympatric

species will result in considerable savings in time and money

when compared to single-species approaches (O’Brien and

Kinnaird 2011).

RESUMEN

Los relevamientos con trampas-cámara en combinación con

modelos tradicionales o espacialmente explı́citos de captura–

recaptura, se han convertido en metodologı́as muy utilizadas

para estimar la densidad de carnı́voros que pueden ser

identificados individualmente. Cuando sólo una porción de la

población puede ser identificada inequı́vocamente, los modelos

de marcado–revisualización tradicionales y espacialmente

explı́citos proveen una alternativa viable. Reanalizamos un

conjunto de datos, que se utilizó para estimar la densidad de

pumas (Puma concolor) mediante el método fotográfico de

captura–recaptura en 3 sitios de estudio en Belice, Argentina y

Bolivia, utilizando modelos más novedosos y avanzados

incluyendo técnicas de marcado–revisualización tradicionales

y espacialmente explicitas. Adicionalmente, evaluamos cómo

la identificación de fotografı́as influyó en las estimaciones de

densidad, comparando estimaciones basadas en las historias de

captura construidas por 3 investigadores independientes.

Estimamos la abundancia de pumas usando modelos de

marcado–revisualización en el programa MARK y luego

estimamos las densidades ad hoc. También estimamos

densidades usando modelos espaciales de marcado–re-

TABLE 4.—Summary statistics (mean; SE; mode; and 2.5, 50, and 97.5 percentiles of posterior distribution) of parameter estimates from a

spatial mark–resight model incorporating photographic captures of pumas (Puma concolor) from camera-trapping surveys conducted in Belize,

Argentina, and Bolivia. Capture histories were constructed by 3 independent investigators. Baseline trap encounter rates (k0) were standardized to

5-day encounter occasions; k0 and c, the probability of identifying a picture of a marked puma, were constant across encounter occasions; s¼
scale parameter related to animal movement; N ¼ number of activity centers in the state space; D¼ density (pumas/100 km2).

Investigator 1 Investigator 2 Investigator 3 Combined

X̄ (SE) Mode 2.5% 50% 97.5% X̄ (SE) Mode 2.5% 50% 97.5% X̄ (SE) Mode 2.5% 50% 97.5% X̄ (SE) Mode 2.5% 50% 97.5%

Belize

s 8.8 (1.62) 8.2 6.3 8.6 12.6 10.1 (1.64) 9.7 7.3 10.0 13.8 6.1 (1.13) 5.7 4.4 6.0 8.8 7.6 (1.77) 6.8 5.0 7.4 11.8

k0 1.1 (1.17) 0.2 0.1 0.6 4.3 0.1 (0.13) 0.1 0.1 0.1 0.4 0.2 (0.13) 0.1 0.1 0.2 0.5 0.2 (0.19) 0.1 0.1 0.2 0.7

c 0.9 (0.05) 0.9 0.8 0.9 1.0 0.9 (0.03) 1.0 0.9 0.9 1.0 1.0 (0.03) 1.0 0.9 1.0 1.0 0.7 (0.07) 0.7 0.5 0.7 0.8

N 14.8 (5.62) 11.0 8.0 13.0 29.0 26.1 (8.49) 22.0 15.0 24.0 47.0 59.4 (22.3) 51.0 25.0 56.0 111.0 30.2 (15.34) 22.0 10.0 27.0 68.0

D 0.3 (0.11) 0.2 0.2 0.3 0.6 0.5 (0.17) 0.4 0.3 0.5 0.9 1.2 (0.44) 1.0 0.5 1.1 2.2 0.6 (0.31) 0.4 0.2 0.5 1.4

Argentina

s 8.6 (1.43) 8.1 6.4 8.3 12.0 8.2 (1.27) 7.7 6.4 8.0 11.3 8.2 (1.59) 7.5 6.0 7.9 12.4 9.1 (1.81) 8.3 6.6 8.8 13.8

k0 0.1 (0.02) 0.1 0.1 0.1 0.2 0.1 (0.02) 0.1 0.1 0.1 0.2 0.1 (0.03) 0.1 0.1 0.1 0.2 0.1 (0.04) 0.1 0.1 0.1 0.2

c 0.9 (0.03) 1.0 0.9 1.0 1.0 1.0 (0.00) 1.0 1.0 1.0 1.0 1.0 (0.03) 1.0 0.9 1.0 1.0 0.8 (0.05) 0.8 0.7 0.8 0.9

N 25.5 (8.94) 22.0 12.0 24.0 46.0 24.9 (8.40) 22.0 12.0 24.0 44.0 27.9 (9.90) 24.0 12.0 27.0 51.0 20.4 (8.04) 17.0 8.0 19.0 39.0

D 0.4 (0.13) 0.3 0.2 0.3 0.7 0.4 (0.12) 0.3 0.2 0.3 0.6 0.4 (0.14) 0.3 0.2 0.4 0.7 0.3 (0.11) 0.2 0.1 0.3 0.6

Bolivia

s 3.1 (0.53) 2.9 2.3 3.0 4.3 2.1 (0.38) 2.0 1.5 2.1 3.0 2.3 (0.44) 2.1 1.6 2.2 3.3 2.2 (0.41) 2.0 1.6 2.2 3.2

k0 0.1 (0.06) 0.1 0.0 0.1 0.2 0.1 (0.03) 0.1 0.0 0.1 0.2 0.1 (0.02) 0.0 0.0 0.1 0.1 0.1 (0.05) 0.1 0.0 0.1 0.2

c 1.0 (0.00) 1.0 1.0 1.0 1.0 0.9 (0.04) 1.0 0.9 1.0 1.0 1.0 (0.00) 1.0 1.0 1.0 1.0 0.9 (0.05) 0.9 0.8 0.9 1.0

N 38.0 (13.8) 31.0 18.0 36.0 71.0 72.8 (24.2) 67.0 34.0 70.0 128.0 85.0 (28.1) 73.0 38.0 82.0 147.0 62.4 (20.4) 54.0 28.0 60.0 105.0

D 4.0 (1.44) 3.2 1.9 3.8 7.4 7.6 (2.53) 6.9 3.6 7.3 13.4 8.9 (2.94) 7.9 4.0 8.6 15.4 6.5 (2.13) 5.7 2.9 6.3 11.0
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visualización espacialmente explı́citos implementados en un

marco Bayesiano. La densidad de pumas no varió sustancial-

mente entre observadores, pero las estimaciones generadas

mediante los 3 modelos estadı́sticos fueron diferentes. Las

densidades de pumas (pumas/100 km2) de modelos de

marcado–revisualización espacialmente explı́citos fueron más

bajas (0.22–7.92) y aumentaron en precisión comparadas con

aquellas de captura–recaptura (0.50–19.35) y técnicas de

marcado–revisualización no espacialmente explı́citos (0.54–

14.70). Nuestro estudio es el primero en estimar la densidad

mediante la utilización de datos de trampas-cámara en

combinación con modelos marcado–revisualización espacial-

mente explı́citos de una población de carnı́voros donde sólo un

subconjunto de individuos está marcado naturalmente. El

desarrollo de técnicas de marcado–revisualización y captura–

recaptura espacialmente explı́citos ofrece la oportunidad de

utilizar un mismo diseño de trampas-cámara para estimar la

densidad de múltiples carnı́voros simpátricos, incluyendo

especies parcial o totalmente identificables individualmente.
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