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A B S T R A C T

Riau Province in central Sumatra, with its peatland, lowland, and montane forest habitats, was once a stronghold
for Sumatran tiger (Panthera tigris sumatrae) populations. Today, Riau may have one of the highest deforestation
rates in the world and wildlife populations are dwindling, with natural forest now comprising approximately
only 18% of the province, mostly contained within protected areas. Agriculture (acacia, rubber, and oil palm)
makes up the majority of Riau's land cover and deforestation for the creation of new plantations is rampant.
Natural forest and tigers still remain in Bukit Tigapuluh National Park and Rimbang Baling Wildlife Reserve,
which remain connected to tiger populations in montane forest on the western edge of Sumatra. In this study,
using freely available Landsat imagery and a maximum likelihood classification algorithm, we create land cover
maps for central Sumatra from 2002 to 2016. We then use current land cover, elevation, and slope variables to
predict changes from forest to plantation from 2016 to 2050 at five year intervals using a multilayer perceptron
neural network. Finally, we compare connectivity based on a 100 km distance threshold (based on potential tiger
dispersal) across the landscape and across years. Land cover maps had 80–90% accuracy, and we predict forest in
Tesso Nilo and the western edge of the study area to be lost by 2050 given current rates of deforestation. Our
connectivity analysis shows that Tesso Nilo and the area between Rimbang Baling and Bukit Tigapuluh are
important components for maintaining connectivity throughout the study area. Focusing conservation and re-
habilitation efforts on forests close to plantations in flat areas, including Tesso Nilo, is necessary to maintain
forests and increase connectivity in Riau to ensure future habitat connectivity for survival of tigers and Sumatra's
other diverse endemic species.

1. Introduction

Deforestation and modification of natural habitat by human devel-
opment is one of the main factors driving small isolated global wildlife
populations to extinction (Ferreras et al., 2001). Because mammals may
be more sensitive to forest disturbance than other taxa worldwide,
(Sodhi et al., 2009), they are likely be the most affected by an increase
in development, with losses now at unprecedented rates (Pimm et al.,
2014). In Southeast Asia alone, estimated losses of 21–48% of mammals
are predicted by 2100 (Brooks et al., 1999). Species that are wide-
ranging and that exist in low density like many carnivores are often the
first to go extinct when habitat is fragmented by development (Beier,
1993; Pimm and Clark, 1996; MacNally and Bennett, 1997).

Carnivore guilds found in Southeast Asia are higher in diversity than
on other continents, yet many Asian carnivore species now occur at
population sizes too small to fulfill their past ecological functions

(Dalerum et al., 2009). As roads and railroads continue to bisect ha-
bitat, dams flood habitat, and mines and towns fragment habitats, the
overall decrease in habitat and the increased distance among habitat
patches will lead to reduced carnivore presence (Crooks, 2002;
Mortelliti and Boitani, 2007). Although carnivore presence often cor-
relates with prey abundance, below a certain patch size threshold, use
of habitat may completely stop regardless of prey abundance (Mortelliti
and Boitani, 2007). In a comparison of a protected area with many
small (< 100 ha) patches to one with fewer large (> 400 ha) habitat
patches in Thailand, Pattanavibool and Dearden (2002) found the
protected area with large patches still contained large mammals that
had been extirpated from the more fragmented protected area. Pre-
serving connectivity among isolated patches of habitat during the early
stages of degradation is one of the most important factors in conserving
endangered carnivore species such as the tiger (Panthera tigris) (Carroll
et al., 2004).
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Sumatra holds all of Indonesia's remaining tigers in approximately
88,000 km2 (Sanderson et al., 2006) but agricultural conversion of tiger
habitat has been a growing threat to Sumatran tigers (P. t. sumatrae)
over the past few decades. In comparison with other tiger habitats
across South East Asia, tiger habitat in central Sumatra experienced one
of the greatest deforestation rates since 2000 (Joshi et al., 2016). Oil
palm was first planted in Sumatra in 1911 (Corley and Tinker, 2003)
and there are now approximately 6.1 million ha of oil palm in Indonesia
(FAO, 2006). From 1990 to 2005, at least 56% of oil palm expansion
replaced forest (Koh and Wilcove, 2008). While tigers have been seen in
oil palm, overall, oil palm plantations support fewer than 50% of ver-
tebrate species as primary forests (Danielsen et al., 2009), have lower
species richness than disturbed forests, and support fewer species than
other types of agriculture (Fitzherbert et al., 2008). Loss of species di-
versity in oil palm plantations may be due to a loss in structural com-
plexity and plant species richness that occurs when plantations are
productive (Chung et al., 2000; Glor et al., 2001; Aratrakorn et al.,
2006).

In Indonesia, like many developing countries, funds for habitat
protection and enforcement are lacking, and anecdotal evidence and
regional national land cover data show a decrease in forest. Tigers have
been observed in oil palm plantations, but Sunarto et al. (2012) found
that tigers were more likely to use forest than any other land cover type,
followed by acacia, oil palm, rubber, and mixed agriculture. Further-
more, Yaap et al. (2016) showed that a wide diversity of mammals use
forest remnants outside of national parks or core forest areas, but spe-
cies richness increased when in larger patches or closer to larger forest
blocks. In addition, when compared to forest remnants> 2 km away
from core forest, tiger, clouded leopard (Neofelis diardi), and leopard cat
(Prionailurus bengalensis) were all only found in remnant patches within
1 km of core forest, underscoring the importance of accessible natural
habitat (Yaap et al., 2016).

While land cover maps have been created for Sumatra and the
greater South East Asia region (Gaveau et al., 2009; Miettinen et al.
2012), these maps have been relatively low in resolution (e.g., 800m
and 250m). In order to more accurately assess loss of tiger habitat in
Riau province, we created finer scale land cover maps using Landsat 5,
7, and 8 imagery for 2002, 2010, 2013/14, and 2016, to build on
Gaveau et al. (2009) and track changes in potential tiger habitat since
the rise of oil palm plantations in the early 2000's. In order to com-
pletely assess habitat connectivity, both structural and functional con-
nectivity should be quantified. Structural connectivity may be de-
scribed as the structure of the habitat with respect to, but independent
of, species, while functional connectivity describes the behavioral re-
sponse of the species or animal to the habitat (Tischendorf and Fahrig,
2000). Although equally or perhaps more important than structural
connectivity, we were unable to assess functional connectivity in the
current study. As a first step to identifying habitat connectivity for ti-
gers as a whole, here we quantify structural connectivity and predict
future habitat connectivity in Riau, using natural forest as a proxy for
habitat.

2. Methods

2.1. Study area

Riau Province is in central Sumatra (Fig. 1), bordered on the west by
the Barisan mountain range and West Sumatra province, and on the east
by peatlands and the South China Sea. Riau's climate is classified in the
Koppen-Geiger system as Af, tropical. Average temperature is 27 °C
while average rainfall is 2696mm per year. The network of protected
areas in Riau is centered by Tesso Nilo National Park, lowland tropical
rainforest. Bukit Tigapuluh National Park is to the southeast of Tesso
Nilo and Rimbang Baling Wildlife Reserve is southwest of Tesso Nilo.
Both Bukit Tigapuluh and Rimbang Baling are primarily comprised of
montane rainforest and may provide connections from the mountainous

forests of the Barisan range along western Sumatra to Tesso Nilo and
Kerumutan Wildlife Reserve, mostly peast swamp forest, on the eastern
side of Riau. Within the Sundaland biodiversity hotspot (Myers et al.,
2000), this area still contains endangered and endemic species such as
Sumatra tiger, Malayan tapir (Tapirus indicus), Sumatran elephant
(Elephas maximus sumatranus), Sunda clouded leopard (Neofelis diardi),
and Sunda pangolin (Manis javanica).

2.2. Data

We searched for cloud-free Landsat imagery of our study area in the
USGS GLOVIS website. Three Landsat scenes were needed to cover our
study site. For 2002, we used one image per scene, all from the 2002
dry season. Due to frequent cloud cover in the tropics and smoke cover
from slash and burn agricultural practices in Sumatra during the end of
the dry season (May–October), images from 2010 were used for the
Rimbang Baling and Tesso Nilo scenes, while 2009 and 2011 images
were used for the Bukit Tigapuluh scene for the second time step.
Similarly, for the third time step, 2013/2014, we used images from
2014 for Tesso Nilo and from 2013 for Bukit Tigapuluh and Rimbang
Baling. For the last time step, we used multiple 2016 images to form the
Rimbang Baling and Bukit Tigapuluh datasets (Table 1). Therefore, we
created land cover maps for four times steps, which varied depending
on availability of cloud-free data: 2002, 2009/2010/2011, 2013/2014
and 2016. Land cover was created at 30m resolution. We created dis-
tance to open land and distance to plantation variables using these land
cover maps at 30m resolution. Elevation and slope were derived from
ASTER GDEM V2 2011 data (METI and NASA, 2011) at 30m resolution.

2.3. Land cover mapping

For image preparation, we atmospherically corrected to top of at-
mosphere reflectance using the Radiometric Calibration tool in ENVI
software package. These reflectance bands were then put into the ENVI
Fmask tool (Zhu et al., 2015) to identify cloud and shadow. We clas-
sified each image separately using a maximum likelihood algorithm. To
improve classification accuracy we incorporated a DEM as additional
input to classify the 2016 Bukit Tigapuluh scene.

We conducted accuracy assessments for 2013/2014 and 2016 image
classifications obtained from ground surveys in March 2015–July 2016.
Because teams were surveying for felid scat and signs in forested areas,
ground truth points were biased for forest land cover. Although we
were able to collect more plantation ground truth points when sur-
veying roads on motorbike, field teams did not feel confident they could
safely enter plantations away from roads without being questioned or
instigating conflict from plantation workers. After observing low ac-
curacy within the oil palm and bare classes, we shifted the oil palm
points 90m to the west, accounting for collecting ground truth data
along roads in plantations and for the low/open ground cover often
found along roads in plantations. Since field work began in 2015, field
ground truth data were unavailable for 2002, 2009/2010/2011 and
2013/2014. We digitized ground truth points using ArcMap 10.4 for
forest, plantations, and open/bare land using visual interpretation of
the 2014 image and field knowledge. Using 380–970 points (Table 1) as
a reference for all 2013/2014 and 2016 images, we generated error
matrices (Supplementary Material). We were unable to assess accuracy
for our 2002 and 2009/2010 images due to lack of ground truth data
and lack of familiarity with the landscape at this time. Our image
classification methods were the same across years, and hence we as-
sume similar accuracy levels from the 2002 and 2009/2010 imagery.

2.4. Land cover prediction

We used IDRISI's TerrSet Land Change Modeler (LCM) (Eastman,
2012) to model land cover change. LCM allows modeling of non-linear
relationships between predictor and response variables through its

E.E. Poor et al. Journal of Environmental Management 231 (2019) 397–404

398



multi-layer perceptron neural network algorithm. Additional ad-
vantages of LCM include its easy user interface and its multiple accu-
racy assessment and validation tools (Pontius et al., 2008; Mas et al.,
2014). The LCM has also been used to describe changes in tiger habitat
elsewhere (Areendran et al., 2017), and has performed well in the
tropics (Koi and Murayama, 2010; Fuller et al., 2011; Perez-Vega et al.,
2012).

To calibrate the land cover change model, we used the 2002 and
2013 land cover maps. Land cover classes included forest, water,
plantation or non-forest vegetation, and open/bare land. We created a
deforestation sub-model, to model the transitions of forest to planta-
tion. Predictors were included based on Cramer's V (Table 2) and their
potential to impact change on the landscape. Cramer's V is a measure of
correlation between two variables, ranging from 0 (no correlation) to 1
(identical variables). Our chosen variables included distance to open
areas, distance to plantation, elevation, slope, distance to major roads,
and distance to forest. Distance variables were natural log transformed.
The land cover variables were selected as dynamic variables that
change with changing land cover. Due to the lack of enforcement of
protected areas, the high human habitation within the parks and the
high human activity in and around parks, we do not include protection
status as a variable and we assume that the rate of change inside parks
is similar to that outside of officially protected areas. We modeled roads
as static variables. Given past trends in Indonesia, and the length of
time new infrastructure projects take to complete or even initiate due to
bureaucracy, land tenure conflicts, and funding issues, we assume that
no new major infrastructure (save for the possibility of the Trans-Su-
matra Toll Road, which will largely overlap current roads) will be built
within the near future.

We used a multi-layer perceptron neural network (MLPNN) to
model transition potentials (the simulation portion of our model) with
10,000 cells (50% training and 50% testing) per land cover class and
10,000 iterations. An MLPNN is an assumption-free, machine-learning
algorithm used to model non-linear relationships through multiple non-
linear algorithms and generalize these relationships with novel data
(Gardner and Dorling, 1998). The MLPNN input layer included 6 nodes
representing distance to open areas, distance to plantation, elevation,
slope, distance to major roads, and distance to forest. The output layer
consisted of two output nodes representing two classes of forest to
plantation change and persistence forest. Different numbers of nodes (3,
5, and 10) in the hidden layer were tested. The default sigmoid function
was used as the activation function. MLPNN weights were auto-
matically updated in the model through the backpropagation training.
We modeled forest change from 2013 to 2016 using the modeled
transition potentials from 2002 to 2013. To validate the model, we

Fig. 1. Location of study area. Study area, which encompasses Tesso Nilo National Park, Rimbang Baling Wildlife Reserve and Bukit Tigapuluh National Park and
protected areas of interest within central Sumatra, Indonesia.

Table 1
Year of Landsat image used for land cover mapping for each of the three study areas, as well as the accuracy and kappa statistics for 2014 (we were unable to
accuracy assess the two earliest time periods). The number of ground truth (GT) points and the percent of ground truth points collected from field work are also
reported. If points were not collected from field work, they were digitized using Landsat imagery.

Protected Area Accuracy 2014 Kappa 2014 % True GT (Total) Accuracy 2016 Kappa 2016 % True GT (Total)

Tesso Nilo
(2002, 2010, 2014, 2016)

92.06 0.8986 0% (380) 81.05 0.6992 25% (970)

Rimbang Baling
(2002, 2010, 2013, 2016(2))

81.59 0.7696 0% (668) 84.38; 82.34 0.8113; 0.7844 19% (576); 23% (467)

Bukit Tigapuluh
(2002, 2009/2011, 2013, 2016(3))

84.04 0.7809 0% (589) 81.07; 81.24; 86.07 0.7647; 0.7603; 0.8113 34% (693); 35% (673); 47% (499)

Table 2
Overall Cramer's V values for all variables in the transition potential land cover
change prediction model, used to predict forest to plantation transitions from
2016 to 2050 in central Sumatra.

Variable Overall Cramer's V

Distance to 2002 open/bare land (ln) 0.2196
Elevation 0.2095
Distance to 2002 plantations (ln) 0.2056
Distance to major roads (ln) 0.1895
Slope 0.1847
Distance to forest (ln) 0.2039
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compared the 2016 predicted land cover to the 2016 land cover created
using Landsat imagery (for full model information see Supplementary
Material). We validated the model using the receiver operating char-
acteristic (ROC) curve, comparing actual 2013–2016 forest to planta-
tion change with the predicted map of 2016 plantations within the
previously forested area (Pontius and Schneider, 2001). We then cre-
ated land cover maps for every five-year interval from 2020 to 2050,
with one recalculation stage for each interval. Although the rate of
deforestation may not remain constant over time, our model assumes
that the rate of change does remain constant. We recognize the rate of
change is likely to vary, and as with any predictive modeling, our model
uncertainty will be higher for the predictions into the more distant
future than it will be for the predictions of the near future. These as-
sumptions are drawbacks of land change modeling and prediction, and
we emphasize here that we are predicting land cover under a business-
as-usual scenario. See Mas et al. (2014) for a visual depiction of this
complete process.

2.5. Habitat connectivity

The simplest method to measure connectivity among habitat pat-
ches is to use a Euclidean distance measure (Moilanen and Hanski,
2001), and that is what we use here to describe structural connectivity
in this landscape, in the absence of species data. Due to the resolution of
our land cover data, we assume ‘habitat’ is forested area. Habitat con-
nectivity measures may be calculated by treating the landscape as a
graph of nodes (habitat patches) and links (paths, or distances between
habitat patches) (Urban and Keitt, 2001). In identifying specific patches
important for maintaining habitat connectivity, we first identified forest
patches greater than 0.5 km2 to increase processing speeds. We then
used Conefor Sensinode 2.6 (Saura and Torne, 2009) to calculate the
betweenness index (BC) (Bodin and Saura, 2010) and the integral index
of connectivity (IIC) (Pascual-Hortal and Saura, 2006) for the actual
2016 landscape and the 2050 predicted landscape to measure the

predicted change in structural connectivity of this landscape over time.
The improved betweenness index (BC(IIC)) is a measure of node con-
nectivity, and measures the number links in a path passing through a
respective patch while taking the patch's area into account (Bodin and
Saura, 2010). Shorter paths indicate higher connectivity and are given a
higher weight. A patch with a high BC(IIC) can be considered better
connected than a patch with a low BC(IIC) measurement. While many
habitat connectivity metrics are not sensitive to important changes that
impact connectivity negatively, the IIC takes patch area, landscape
area, and path distances into account, making it sensitive to fragmen-
tation (Pascual-Hortal and Saura, 2006). This metric can also be used as
a general measure of habitat connectivity; an increase in IIC indicates
an increase in connectivity, whereas a decrease indicates a connectivity
decline landscape-wide (Pascual-Hortal and Saura, 2006). Because our
aim is to determine whether forest is still connected in this landscape
despite human modification with respect to tigers, we used a 100 km
distance threshold, assuming this is the approximate maximum distance
tigers can disperse in this landscape (Smith, 1993; Wang et al., 2015).
With this assumption, forest patches within 100 km of each other are
considered connected for tigers, and more distant patches may be
connected to each other through a network of intermediate patches if
these intermediate patches are located within the 100 km potential
dispersal distance with respect to one another, i.e. a single link between
two patches can be 100 km, maximum.

3. Results

3.1. Land cover mapping

Our land cover classification accuracies gathered from ground truth
and digitized validation points ranged from 81.05% to 92.06%. Land
cover mapping in 2016 for Bukit Tigapuluh proved challenging, re-
quiring the use of three Landsat images and elevation data to achieve
accuracies in the 80%'s (Table 1). From 2002 to 2016, 34.55% of forest

Fig. 2. Land cover maps. Land cover for the larger central Sumatra study area (dotted black line, top left) and focal protected areas, Tesso Nilo National Park,
Kerumutan Wildlife Reserve, Bukit Tigapuluh National Park and Rimbang Baling Wildlife Reserve from 2002 to 2016, created using three Landsat scenes, all of which
have> 80% accuracy. White areas within the study area indicate cloud cover.
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has been lost in our study area (Fig. 2).

3.2. Land cover prediction

The MLPNN transition potential model final accuracy rate gathered
from validation procedures was 71.75%. Slope was the most influential
variable in the model, while distance to forest was least influential. The
area under the curve (AUC) for predicted new plantation from forested
areas was 68%. The model over-predicted forest loss within Tesso Nilo
in comparison with our Landsat-based land cover maps (Fig. 3), with
58.19% of forest predicted to be lost from 2016 to 2050. Small remnant
patches of forest seem to remain in Tesso Nilo through 2040, and a
small fragment remains through 2050. Our model also under-predicts
the amount of forest in Kerumutan, which, despite being surrounded by
acacia plantations, does still contain natural peat forests. The most

significant losses in forest are predicted to be in the northeast corner of
the study area, near Kerumutan, an area rich in peat, and in the forest
remnants between Bukit Tigapuluh and Rimbang Baling. In 2050, the
models predict forest will remain in Rimbang Baling and Bukit Tiga-
puluh, presumably due to higher elevation and steeper slopes (Fig. 3).

3.3. Habitat connectivity

Overall, habitat connectivity decreased from 2016 to 2050. In both
time periods, all habitat was connected given the 100 km threshold
distance (Fig. 4). However, the IIC, a relative measure of habitat con-
nectivity, decreased by nearly 92% (Fig. 4). In 2016, the remaining
forest of Tesso Nilo and the forest corridor between Rimbang Baling and
Bukit Tigapuluh had the highest BC(IIC), indicating their importance
for maintaining connectivity between forest across the landscape.

Fig. 3. Land cover predictions. Predictions created using a multilayer perceptron neural network for Tesso Nilo National Park, Kerumutan Wildlife Reserve, Bukit
Tigapuluh National Park and Rimbang Baling Wildlife Reserve in Riau, Sumatra, with 2013–2016 used as a validation time period. White areas within the study area
(top left; dotted line) are clouds.
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However, in 2050, the forest of Tesso Nilo is lost along with the forest
northeast of it, and the remaining patches between Rimbang Baling and
Bukit Tigapuluh have the highest BC(IIC) within the landscape.

4. Discussion

The land cover maps that we created as part of this study provide a
novel, fine-scale analysis of central Riau's changing land cover since the
expansion in palm oil plantations. While we believe that the land cover
maps we created from ground truth data are the first accuracy assessed
set of maps dating from 2002 to 2016, there is also room for im-
provement. Validation procedures for land cover change predictions are
still debated (Pontius et al., 2004), and typical statistical validation
procedures such as k-fold cross validation are insufficient due to the
possibility of spatial and land cover class quantity errors (Pontius et al.,
2004; Pontius et al., 2008). Improved validation techniques could alter
our results. Additionally, distinguishing between natural forest, oil
palm plantation, and acacia plantation proves challenging, but was
improved with the use of all Landsat bands and in some cases, elevation
data. Budgetary restrictions forced us to use freely available, lower
resolution Landsat imagery, but our methods are easily repeatable for
use in other parts of Sumatra, free of imagery costs, by those wishing to
replicate this study. The other challenge we faced when creating the
land cover maps included extensive cloud or smoke cover. We at-
tempted to use scenes from the dry season, where cloud cover was less
significant, but in some years (2013/2014, 2016), smoke from slash-
and-burn land clearing covered significant areas of Landsat scenes. To
remedy this, future modelers may incorporate radar data, which can be
used regardless of cloud cover.

Our models predict less forest in 2016 than our mapped forest, and
they predict a rapid decrease in forest of Kerumutan, to the northeast of
Tesso Nilo. This may be due to the inaccuracies of the input land cover
map. Distinguishing between acacia and natural forest proved difficult,
and we believe our maps may have slightly overestimated the amount
of acacia near Kerumutan. While there is a substantial amount of acacia

forest in this area, future transitions of additional forest may be slow
due to the alteration and draining of the land in this particular area that
is required before a first planting. The over-prediction of forest loss may
also be attributed to a possibly higher deforestation rate from 2002 to
2013 (used for model calibration) than observed from 2013 to 2016
(model validation). Future work could focus on incorporating socio-
economic drivers of land cover change such as the price of palm oil and
land tenure regulation enforcement efforts, and could include a sensi-
tivity analysis by adjusting deforestation rates during calibration to
compare potential changes to model outputs.

Although all patches are connected under the 100 km distance
threshold, (used as a ‘best-case’ maximum movement distance for ti-
gers), this assumes that wildlife moves from one habitat patch in a
straight line to the next closest as they move about the landscape.
However, in reality, this may not be true and wildlife may not move
directly from one patch to the next closest patch, thus making the
distance or effort to travel between forest patches greater. In these
cases, the entire landscape may not be ‘connected’, as our connectivity
indices show, under the 100 km distance threshold chosen for this
landscape, and wildlife may struggle to move from forest patch to forest
patch. While identifying changes in forest structural connectivity is an
important first step, identifying functional connectivity of endangered
species in this landscape is possibly even more important in informing
conservation decisions. Our future work will focus on combining spe-
cies data with this spatial data analysis to better inform conservation
and management by identifying current, and creating future, corridors
to enhance Sumatran tiger and other endangered and endemic felid
populations.

Despite some minor inaccuracies in our model, it is still clear that if
current land clearing practices continue in Riau, we stand to lose a
significant amount of forest cover, which could negatively impact cri-
tically endangered and endemic wildlife that still exists in this highly
modified landscape. This straightforward analysis highlights the need
for immediate conservation interventions. Tesso Nilo has already
lost> 50% of its natural forest since 2002, and our results could be

Fig. 4. Landscape connectivity. Two measures of connectivity, betweenness connectivity index (BC(IIC)) (top row) and the integral index of connectivity (IIC), where
high values indicate high connectivity, for forest patches < 0.5 km2 across central Sumatra and a study area including focal protected areas Tesso Nilo National Park,
Kerumutan Wildlife Reserve, Bukit Tigapuluh National Park and Rimbang Baling Wildlife Reserve, from 2016 (actual land cover) through 2050 (predicted).
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used as a worst-case scenario of forest loss, assuming the current de-
forestation laws in Indonesia become better enforced and deforestation
slows in the future.

Generally, our model accuracies are relatively high, and, since these
are the first accuracy-assessed land cover maps and the first land cover
prediction maps created for Riau, we believe they can provide useful
guidance to land cover management and valuable insights for areas
most vulnerable to forest loss. Our models indicate that clearing for
plantations is most likely to happen in flat, lowland areas near areas
that are already plantations. The remaining forest within Tesso Nilo
meets these prerequisites, which, when combined with its importance
in maintaining landscape-wide connectivity, as a potential stepping-
stone for wildlife moving from the western edge of Riau to the peat-
lands of the northeast, makes it a critically important patch of forest to
protect. We also recommend focusing efforts on the remaining forest
patches between Rimbang Baling and Bukit Tigapuluh to maintain
north-south connectivity between these two mountainous protected
areas that are likely to persist into the future.

Given the amount of deforestation that has already occurred within
this landscape, we stress the potential role that reforestation and re-
storation could play in this landscape. Average forest patch size in 2016
of patches> 0.5 km2 was just above 11 km2. With a home range re-
quirement of around 100 km2 (Sunarto et al., 2012), tigers in our study
area are likely already facing a habitat deficit, further supported by an
observed increase in wildlife conflict in this and neighboring provinces.
Tesso Nilo has already lost more than half of its forested area, and it
currently is not large enough by itself to maintain one tiger, let alone a
tiger population. Tigers occasionally are reported by villagers in this
area and continued human population growth could lead to conflict
echoing that plaguing the resident Sumatran elephant population. Re-
storing some areas to a forested state would provide additional habitat
and potentially could mitigate or decrease future conflicts. We re-
commend restoring Tesso Nilo to forest, though we also recognize the
social and political challenges that would accompany any restoration
efforts.

Tracking deforestation and identifying areas for mitigation is ex-
tremely important throughout the tiger range, but this is just one piece
of the puzzle in achieving the ‘Tx2’ goal of doubling the wild tiger
population by 2022, put forth by the St. Petersburg Declaration in 2010.
Many tiger landscapes are also experiencing high and/or increased
poaching and hunting levels or pressure from more organized poaching
syndicates targeting tigers or prey (Risdianto et al., 2016). If these large
international, social, and legal issues are not addressed, conservation of
habitat is futile. While there are countless scientists and non-govern-
mental organizations working towards tiger conservation and Tx2,
sustaining and increasing tiger populations by acting on conservation
recommendations remains the responsibility of local and national
governments. We hope this work highlights the urgency of the situation
of forest loss in Riau and that it better informs those working on the
ground as to where best to focus conservation efforts.
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