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Tools and Technology

Identifying Individual Jaguars and Ocelots via
Pattern‐Recognition Software: Comparing
HotSpotter and Wild‐ID
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ABSTRACT Camera‐trapping is widespread in wildlife studies, especially for species with individually
unique markings to which capture–recapture analytical techniques can be applied. The large volume of data
such studies produce have encouraged researchers to increasingly look to computer‐assisted pattern‐
recognition software to expedite individual identifications, but little work has been done to formally assess
such software for camera‐trap data. We used 2 sets of camera‐trap images—359 images of jaguars (Panthera
onca) and 332 images of ocelots (Leopardus pardalis) collected from camera traps deployed in 4 study sites in
Orange Walk District, Belize, in 2015 and 2016—to compare the accuracy of 2 such programs, HotSpotter
and Wild‐ID, and assess the effect of image quality on matching success. Overall, HotSpotter selected a
correct match as its top rank 71–82% of the time, whereas the rate for Wild‐ID was 58–73%. Positive
matching rates for both programs were highest for high‐quality images (85–99%) and lowest for low‐quality
images (28–52%). False match rates were very low for HotSpotter (0–2%) but these were greater in
Wild‐ID (6–28%). When lower ranks were also considered, both programs performed similarly (overall
22–24% nonmatches for HotSpotter, 17–26% nonmatches for Wild‐ID). We found that in both programs,
images more often matched to other images of the same quality; therefore, including multiple reference
images of an individual, of different qualities, improves matching success. These programs do not provide
fully automatic identification of individuals and human involvement is still required to confirm matches, but
we found that they are effective tools to expedite processing of camera‐trap data. We also offer usage
recommendations for researchers to maximize the benefits of these tools. © 2020 The Wildlife Society.

KEY WORDS camera trap, HotSpotter, jaguar, Leopardus pardalis, ocelot, Panthera onca, pattern‐recognition,
photographic identification, Wild‐ID.

Recognizing and monitoring individual animals is essential to
obtain insights for wildlife management, including tracking
individual fitness and reproductive success (Dinsmore and
Johnson 2012), determining local activity patterns and mi-
grations (Millspaugh et al. 2012), and monitoring demo-
graphic parameters like abundance and survival (Pierce
et al. 2012; Satter et al. 2019a, b). Many wildlife species
possess individually distinct natural markings that can be
used to noninvasively track individuals. The rise of high‐
quality, low‐cost digital cameras—especially digital trail
cameras—has made this approach particularly viable for
studying individually marked species like jaguars (Panthera
onca), and thus camera‐trapping has become a widespread
technique in wildlife studies (Kelly et al. 2012).

Studies employing digital photography, however, present
new challenges because they usually generate vast amounts of
data. Manually reviewing images and matching individual
animals by eye according to their spot, stripe, or blotch pat-
terns is time‐consuming, tedious, and error‐prone. Many
camera‐trapping studies use capture–recapture analytical
techniques (e.g., Otis et al. 1978, White and Burnham 1999,
Williams et al. 2002, Royle et al. 2013) and several studies
have found that misidentifications can severely bias the re-
sulting estimates (Creel et al. 2003, Lukacs and Burnham
2005, Yoshizaki et al. 2009, Morrison et al. 2011).
Computer‐aided photo‐identification or pattern‐recognition

is an emerging technology with the potential to address the
challenges of identifying individuals by natural patterns. Early
implementations involved complex interfaces and required
substantial input from the end‐user (e.g., Hiby and Lovell
1990, Kelly 2001). More recently, several open‐source, freely
downloadable software packages have been developed that are
more sophisticated and are increasingly being used in wildlife
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studies. Such studies involve diverse taxa including ungulates
(e.g., Strauss et al. 2015, Lea et al. 2016, Morrison et al.
2016b), felids (Lingaraja et al. 2017, Miller et al. 2018),
cetaceans (Jablons 2016), herpetofauna (Bendik et al. 2013,
Cross et al. 2014, Tumulty et al. 2018), and even mollusks
(Barord et al. 2014). Despite their proliferation, little has been
published formally comparing software packages. Of the
comparisons that have been done (e.g., Morrison et al. 2016a,
Cruickshank and Schmidt 2017, Matthé et al. 2017,
Suriyamongkol and Mali 2018), all used data sets consisting
of photographs of herpetofauna. In all cases, this involved
capturing the animals and photographing them with a
handheld camera with standardized distance and positioning.
These methods produce images of much higher quality than
the blurry, partial, or oddly oriented images often obtained in
camera‐trapping studies, yet these programs are also being
widely used with such mixed‐quality images. To our knowl-
edge, there is no published comparison of the effectiveness of
these programs when applied specifically to camera‐trapping
data.
Pattern‐recognition programs can broadly be classified

into 2 different groups: pixel‐based and feature‐based
(Matthé et al. 2017). Programs employing pixel‐based al-
gorithms examine the entire image on a pixel‐by‐pixel basis.
Images that have a greater number of differences at specific
pixel locations are less likely to be a match than images
that have a large number of pixel positions with the same
(or very similar) values. Examples include Amphident
(Matthé et al. 2008) and APHIS (Moya et al. 2015).
Feature‐based algorithms instead identify several distinct
characteristics (e.g., spots, stripes, warts, etc.) within each
image, then compare the shapes and positions of these
characteristics between images. Examples of software using
a feature‐based approach include Wild‐ID (Bolger
et al. 2012), HotSpotter (Crall et al. 2013), and I3S Pattern+
(Van Tienhoven et al. 2007). Matthé et al. (2017) found that
pixel‐based algorithms generally performed better (i.e., had a
higher recognition rate—which is equivalent to a lower false
rejection rate—for images with known matches) across sev-
eral salamander data sets, but they also found that these al-
gorithms were sensitive to differences in the way an image
was oriented or cropped. For example, an image of a sala-
mander that was cropped somewhat higher on the body than
another image of the same salamander would be much less
likely to be matched. Therefore, pixel‐based algorithms
would likely be inappropriate for most camera‐trap data be-
cause of the great variation in image quality. Thus, we fo-
cused our comparison on programs using feature‐based al-
gorithms because these were much more robust to quality
variations, and are likely to perform better for camera‐trap
data. I3S Pattern+ has been primarily cited in studies of
aquatic organisms and herpetofauna (e.g., Cochran
et al. 2016, Calmanovici et al. 2018, Davis et al. 2018),
whereas Wild‐ID and HotSpotter are the programs most
widely cited in studies of large terrestrial wildlife, including
camera‐trap studies (e.g., Lee et al. 2017, Lingaraja
et al. 2017, Miller et al. 2018). Therefore, our comparison
focused on the latter 2 programs.

Wild‐ID (Bolger et al. 2012) implements the Scale
Invariant Feature Transform (SIFT) of Lowe (2004) to
identify, extract, and describe distinctive image features.
The SIFT feature descriptors can identify analogous fea-
tures in different images despite differences in scale, illu-
mination, and orientation of the subject to the camera. This
makes it potentially well‐suited to photographs taken in
uncontrolled field settings, especially camera‐trap photos.
For each combination of images in an analysis, Wild‐ID
then performs a pairwise comparison of the shape and rel-
ative geometry of SIFT features between the images. Each
pair is assigned a numerical score based on these compar-
isons, with a larger score indicating a greater degree of
similarity. These pairs are ranked accordingly, and up to
20 top potential matches are presented for the end‐user to
accept or reject as valid. Wild‐ID is implemented in Java, so
it can be run on Windows, MacOS, and Linux platforms.
HotSpotter (Crall et al. 2013) builds on this method,

extending it to a 2‐algorithm approach. The first algorithm
extracts SIFT features and performs one‐versus‐one image
comparisons similar—with minor improvements—to the
algorithm used by Wild‐ID. The second algorithm uses
Local Naïve Bayes Nearest Neighbor methods (McCann
and Lowe 2012) to perform quick one‐versus‐many
comparisons with an entire database of images to identify
images with similar groupings of features. The program
assigns a similarity score to each pairing, based on the re-
sults of both algorithms, with a larger score indicating
greater similarity. HotSpotter initially presents the end user
with thumbnails of the 6 highest scores for review, but lower
ranked scores are also viewable. As with Wild‐ID, the end‐
user makes the final determination to accept a match or not.
In addition to the standalone package evaluated here,
HotSpotter’s algorithms and methods have also been in-
corporated into the citizen science platform, Wildbook
(Berger‐Wolf et al. 2017). Versions of HotSpotter are
available for both Windows and MacOS, and source code is
available for Linux.
The goal of our study was to evaluate the effectiveness of

using pattern‐recognition software to identify individual
animals in camera‐trap photos. To accomplish this, we had
several objectives: 1) use 2 distinct data sets—1 of jaguars
and 1 of ocelots (Leopardus pardalis)—to test both Hot-
Spotter and Wild‐ID and quantify their accuracy for large
versus small species with photos of varying quality;
2) compare results between programs and data sets, in-
cluding statistical evaluation of any observed differences;
given the refined, multi‐algorithm method HotSpotter
uses, we predicted that HotSpotter would prove more
accurate than Wild‐ID; and 3) provide usage recom-
mendations for both programs specifically and pattern‐
recognition software in general.

STUDY AREA

Both of our photo data sets of jaguars and ocelots were
assembled from images collected during the same long‐
term, noninvasive, camera‐trapping study in 4 sites in
Orange Walk District, Belize, Central America: Hill Bank,
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La Milpa, Gallon Jug, and Yalbac. All 4 sites primarily
consisted of lowland broadleaf tropical forest, with some
relatively small areas of pine savannah. Hill Bank and
La Milpa together formed the 1,052‐km2 Rio Bravo
Conservation and Management Area (RBCMA), managed
by Programme for Belize. Gallon Jug Estate and the Yalbac
Ranch and Cattle Company border the RBCMA to the
south and west. Yalbac Ranch and Cattle Company, managed
by the Forestland Group, occupied 849 km2, including
423 km2 purchased from Gallon Jug in 2012. These lands now
completely surround Gallon Jug Estate, which now comprises
113 km2 after the sale. See Satter et al. (2019b) for additional
details about the study area.

METHODS

We collected photo‐captures across the 4 sites from April
to October 2015 and May to September 2016. Each study
site consisted of 10–36 camera stations with paired trail
cameras facing each other across trails, old logging roads,
or main roads. Camera stations were placed at 2–3‐km in-
tervals following previously established methods for
camera‐trap studies of felids in Belize (Kelly 2003, Silver
et al. 2004, Harmsen 2009). Cameras operated 24 hours/day
for 2–3 months/camera station.
We tested both HotSpotter and Wild‐ID using 2 distinct

groups of these images, 1 set of jaguars and 1 set of ocelots,
to determine whether the program worked equally well on
large versus small species. For each species, we assembled a
group of test images and a group of reference images
(Table 1). Initially, both reference images and test images
were manually identified by eye to individual animals. We
explicitly entered the identities of the reference images in
the software so the test images could be compared with
them, while we had the programs treat the test images as
unknown. We knew the true identities in advance, so we
were able to evaluate the accuracy of the matches suggested
by the programs for each test image.
The distinction between reference and test images is not

intrinsic to either program. Both compared the entire set of
images (reference and test) and ranked the best matches
regardless of the image set to which they belonged. In many

cases, a given side of a given individual was represented
multiple times in the test image set, and sometimes the top
match would be to another test image, rather than a refer-
ence image. As long as both were in fact the same side of
the same individual, we considered this a positive match.
HotSpotter includes an internal mechanism for cross‐
referencing matched images, so that even such test–test
matches were ultimately linked to a reference image and ID.
In Wild‐ID, this cross‐referencing had to be done separately
(e.g., with an external spreadsheet). Inclusion of a reference
set was a convention that we adopted to ease identification—
as opposed to merely matching—and to ensure that every
image would have ≥1 other image of the same side of the
same individual to which it could potentially be matched.
For ocelots, we selected test images only from data col-

lected in Gallon Jug in 2016. To obtain roughly the same
number of test images of jaguars, and because photo‐capture
rates for jaguars were much lower than ocelots, we selected
jaguar test images from data collected in 2015 from Hill
Bank, La Milpa, Gallon Jug, and Yalbac, and in 2016 from
Hill Bank, Gallon Jug, and Yalbac. We ranked the quality
of all images on a 3‐point scale: 1 for blurred, low‐quality
images, 2 for medium‐quality images, and 3 for crisp, high‐
quality images (Fig. 1; Table 1).

Table 1. The quantity of reference images and test images of jaguars (A) and
ocelots (B)—totaled by image quality—used to assess HotSpotter and
Wild‐ID. The identities of reference images were entered into the programs in
advance, whereas test images were those that the programs attempted to
match. Jaguar images were collected from camera traps deployed in Belize, in
Gallon Jug, Yalbac, Hill Bank, and La Milpa during the summers of 2015 and
2016. Ocelot images were collected from camera traps deployed in Gallon Jug,
Belize, in the summer of 2016.

Species Image quality Reference images Test images

A) Jaguars Total 321 359
High 143 136
Medium 95 112
Low 83 111

B) Ocelots Total 171 332
High 56 110
Medium 58 128
Low 57 94

Figure 1. Representative examples of high‐ (3), medium‐ (2), and low‐ (1) quality images of jaguars (A) and ocelots (B) collected from camera traps
deployed in 4 study sites in Orange Walk District, Belize, in 2015 and 2016. Images were classified as high‐quality when images were crisp and fine details of
spots were clear. Medium‐quality images were moderately blurry, but the general shape of most spots was still recognizable. Low‐quality images were heavily
blurred and individual spots were not clearly discernable. The images shown are all of the same individual jaguar and ocelot, respectively.
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We assembled ocelot reference images for all individuals
that had ever been photographed in Gallon Jug since we
began surveying there in 2013, and jaguar reference images
for all individuals ever photographed in any of the 4 sites
since we began surveying them (since 2008 in La Milpa,
2009 in Hill Bank, 2013 in Gallon Jug, and 2014 in Yalbac).
For both species, we included—to the extent possible—
reference images of each quality level of each side of each
individual. In some cases, though, images were only avail-
able for one side of an individual, or there were no images of
some quality levels. In the few cases for which reference
images of one side of an individual were unavailable, this
was due to us never having captured images of that side of
that individual and hence our test images also did not in-
clude examples of the missing side of those individuals.
Thus, in terms of assessing the matching success of these
programs, the lack of both sides did not impact our results.
To minimize background objects while maximizing the

visibility of distinct pelage patterns, we cropped all images to
a rectangular area just around each animal’s flank. HotSpotter
includes a built‐in feature that effectively accomplished this
by allowing a user to define a rectangular “chip” (Fig. 2)
specifying a region of interest (ROI) to which the algorithm
would be limited. For Wild‐ID, we externally cropped im-
ages using third‐party image‐editing software (e.g., Microsoft
Paint [Microsoft Corporation, Redmond, WA, USA] or
Adobe Photoshop [Adobe, San Jose, CA, USA]) before
loading the images for analysis. Image processing software is
widely and—for some packages—freely available, but this did
make preprocessing images for Wild‐ID more cumbersome
than for HotSpotter.
We classified the result for each test image in each program

as either a positive match, a false match, or a nonmatch. We
considered the outcome a positive match when the top match
suggested by the program was in fact another image of the
same side of the same individual. A false match occurred
when an accurate match was included somewhere in the top
10 suggested matches, but other images that were not of the
same side of the same individual were ranked higher. We
considered the result a nonmatch when the program did not

include an image of the same side of the same individual
anywhere in its top 10 suggested matches.
We summarized results as proportions, grouped by species,

program, and image quality. We used the plus 4 method of
Agresti and Coull (1998) to calculate 95% confidence in-
tervals for these proportions and tested for significant dif-
ferences (α= 0.05) between the proportions at each quality
level (Baldi and Moore 2014). For positive matches, we also
recorded the photo quality of the matching images and
calculated percentages grouped by species, program, and test
image quality. For jaguar images only, we also recorded the
total time to complete the matching process. This did not
include the time needed to assemble the database of refer-
ence images, nor did it include any preprocessing time
(i.e., cropping images for Wild‐ID or defining ROIs in
HotSpotter), only the time for each program to calculate
and rank matches and the user to review them.

RESULTS

In HotSpotter, the proportion of positive matches for all
image qualities combined was 0.77 (95% CI= 0.73–0.82) for
jaguars and 0.76 (95% CI= 0.71–0.80) for ocelots, while in
Wild‐ID it was 0.68 (95% CI= 0.63–0.73) for jaguars and
0.63 (95% CI= 0.58–0.68) for ocelots (Fig. 3; Appendix A,
available online in Supporting Information). High‐quality test
images had the greatest rate of positive matches for both image
sets in both programs (observed proportions= 0.85–0.99).
Medium‐quality test images had lower positive match rates
(observed proportions= 0.70–0.88). Low‐quality images had
the lowest positive match rates (observed proportions=
0.28–0.52).
HotSpotter consistently had greater positive match rates

than Wild‐ID for both data sets and all quality levels
(Fig. 3). These differences were significant (Appendix B,
available online in Supporting Information) for jaguar
images of high‐quality (0.10 greater than Wild‐ID, 95%
CI = 0.02–0.17) and for all jaguar images overall (0.09
greater than Wild‐ID, 95% CI= 0.03–0.16), and for
ocelot images that were high‐quality (0.13 greater than
Wild‐ID, 95% CI = 0.06–0.19), medium‐quality (0.19

Figure 2. An example of defining a region of interest in HotSpotter software for identifying jaguars and ocelots from photos collected from camera traps
deployed in 4 study sites in Orange Walk District, Belize, in 2015 and 2016. Both HotSpotter and Wild‐ID required that the original image be reduced to
minimize the possibility of their algorithms attempting to match patterns in the background. HotSpotter includes a built‐in feature to do so, whereas Wild‐
ID required the use of third‐party image‐editing software to crop images ahead of time.
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greater than Wild‐ID, 95% CI = 0.09–0.28), and for all
ocelot images overall (0.13 greater than Wild‐ID, 95%
CI = 0.06–0.20). There were slight differences in a given
program between species (e.g., a lower positive match rate
for high‐quality jaguar images in HotSpotter compared
with high‐quality ocelot images in HotSpotter), but most
of these differences were not significant (Appendices A, C,
available online in Supporting Information). The ex-
ceptions were the low‐quality image sets; in both pro-
grams, positive match rates for low‐quality ocelots were
significantly lower than for low‐quality jaguars (0.19 lower
in HotSpotter, 95% CI = 0.06–0.32; and 0.14 lower in
Wild‐ID, 95% CI= 0.01–0.26).
False match rates (Fig. 4; Appendix A) for HotSpotter

were very low (observed proportions= 0.00–0.02) for both
jaguars and ocelots, while Wild‐ID’s false match rates were
significantly greater (observed proportions= 0.06–0.28)
across all categories. False match rates in Wild‐ID were
greatest for low‐quality images at 0.29 (95% CI= 0.20–0.37)
for jaguars and 0.17 (95% CI= 0.10–0.25) for ocelots.
False matches were reduced for medium‐quality images at
0.13 (95% CI= 0.07–0.19) for jaguars and 0.14 (95%
CI= 0.08–0.20) for ocelots, and further reduced for high‐
quality images at 0.08 (95% CI= 0.03–0.12) for jaguars and
0.08 (95% CI= 0.03–0.13) for ocelots.
There was no consistent trend with respect to nonmatches

(Fig. 5; Appendix A). For jaguar images, HotSpotter had a
slightly greater nonmatch rate than Wild‐ID for most

categories, but this difference was only significant for low‐
quality test images (z= 2.48, P= 0.013; 0.16 greater than
Wild‐ID, 95% CI= 0.03–0.28). The nonmatch rate for high‐
quality jaguar images, though, was 0.04 (95% CI= 0.01–0.09)

Figure 3. Proportions with 95% confidence intervals of positive matches
for images of jaguars (A) and ocelots (B) collected from camera traps
deployed in 4 study sites in Orange Walk District, Belize, in 2015 and
2016, grouped by image quality and tests in HotSpotter or Wild‐ID.
Positive matches were defined as cases in which the top‐ranked match for a
test image was in fact another image of the same side of the same
individual. * Indicates a significant difference (α= 0.05).

Figure 4. Proportions with 95% confidence intervals of false matches for
images of jaguars (A) and ocelots (B) collected from camera traps deployed
in 4 study sites in Orange Walk District, Belize, in 2015 and 2016, grouped
by image quality and tests in HotSpotter or Wild‐ID. False matches were
defined as cases in which another image of the same side of the same
individual was somewhere among the top 10 matches suggested by the
program, but ≥1 incorrect match was ranked higher. * Indicates a significant
difference (α= 0.05).

Figure 5. Proportions with 95% confidence intervals of nonmatches for
images of jaguars (A) and ocelots (B) collected from camera traps deployed
in 4 study sites in Orange Walk District, Belize, in 2015 and 2016,
grouped by image quality and tests in HotSpotter or Wild‐ID.
Nonmatches were defined as cases in which another image of the same
side of the same individual was not among any of the top 10 matches
suggested by the program. * Indicates a significant difference (α= 0.05).
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in HotSpotter, compared with 0.08 (95% CI= 0.05–0.14) in
Wild‐ID. Conversely, the nonmatch rate for ocelot images was
generally greater in Wild‐ID. For high‐quality test images, the
nonmatch rate was 0.06 (95% CI= 0.01–0.12) lower for
HotSpotter than Wild‐ID (z=−2.38, P= 0.017), and for
medium‐quality test images, HotSpotter’s nonmatch rate was
0.09 (95% CI= 0.00–0.17) lower than Wild‐ID (z=−2.00,
P= 0.045). HotSpotter’s nonmatch rate for low‐quality ocelot
images (0.65, 95% CI= 0.56–0.75) was greater than Wild‐
ID’s (0.56, 95% CI= 0.46–0.66), but this difference was not
significant. Nonmatch rates were greatest among low‐quality
images for both species in both programs (observed
proportions= 0.31–0.66) and lowest among high‐quality im-
ages (observed proportions= 0.01–0.08).
We found that across most quality categories in both

species and both programs, the majority of the top‐ranked
positive matches were matched to images of the same quality
as the test images (Fig. 6). This was especially pronounced
in all high‐quality test images and low‐quality jaguar test
images, in which 63–90% of the top matches were images of
the same quality. For medium‐quality test images, there was
a larger proportion of top matches of different quality
(primarily matches to high‐quality images), but for 3 of the
4 groups (all except ocelot images in HotSpotter) there were
still more top matches to medium images than to both other
categories combined. Among medium‐quality ocelot images

in HotSpotter, other medium‐quality images still account
for the single greatest category of positive matches (47.8%)
but matches to low‐ and high‐quality images together ac-
counted for 52.2% of positive matches. Low‐quality ocelot
images in Wild‐ID were similar in that the majority of
matches (53.9%) were to images of the same quality, but
there were a larger proportion of matches to other qualities
as well (34.6% to medium‐quality images and 11.5% to
high‐quality images). Low‐quality ocelot images in Hot-
Spotter were the major exception to these trends, with only
35.5% of positive matches to other low‐quality images while
45.2% of the matches were to medium‐quality images and
19.4% were to high‐quality images.
Measurements of the time to complete the matches

were based on each program processing 706 jaguar images
(reference and test images). We subsequently removed 26 of
those test images from the rest of our analysis because either
they were individuals we had never detected before so there
were no other images to which they could possibly be
matched, or because we deemed the images unmatchable
(e.g., only the tip of a tail was visible). In either case, in-
cluding those images would have negatively biased our re-
sults and would not have been an accurate reflection of the
fundamental matching abilities of the programs, so those
26 test images are not included in any of the other results
above. In HotSpotter, it took 4 hours and 44 minutes to

Figure 6. Percent and 95% confidence intervals of top positive matches by quality for each quality of jaguar test image in HotSpotter (A) and Wild‐ID (C)
and each quality of ocelot test image in HotSpotter (B) and Wild‐ID (D). Images collected from camera traps deployed in 4 study sites in Orange Walk
District, Belize, in 2015 and 2016.
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complete matching the 706 images. In Wild‐ID, it took
17 hours and 50 minutes to complete matching the same
images. It should be noted that we conducted tests in
Wild‐ID first and we became more efficient by the time we
conducted the tests in HotSpotter. So, although Wild‐ID’s
computing time was slower, the difference noted here is
likely inflated.

DISCUSSION

Our positive match rates are lower than those reported by
Bolger et al. (2012) or Crall et al. (2013) when presenting
Wild‐ID and HotSpotter, respectively, but are broadly
consistent with the findings of other literature assessing
the programs. For example, Mettouris et al. (2016) used
Wild‐ID to match high‐quality images of 2 different newt
species and found that the top‐ranked match was correct
22–99% of the time, and a correct match was somewhere in
the top 20 candidates 100% of the time. Cruickshank and
Schmidt (2017), analyzing high‐quality images of yellow‐
bellied toads (Bombina variegata), found that Wild‐ID
presented a correct, top‐ranked match 91.6% of the time
and that a correct match was within the top 2 candidates
95% of the time. Suriyamongkol and Mali (2018) studied
Rio Grande cooter (Pseudemys gorzugi) and found that
Wild‐ID offered a correct match as the top choice 61–66%
of the time, and that a correct match was somewhere in the
top 20 ranks 77–84% of the time.
Our positive match rates only considered the top match

and not top 10–20; therefore, our results may understate the
true benefits of the programs. In an applied context, even
when the top image is not a positive match, if a correct
match is somewhere among the top choices, then the pro-
gram has effectively reduced the number of images that a
researcher must review by eye, thereby still saving sub-
stantial time and effort. However, Matthé et al. (2017)
found the performance of different programs may vary
dramatically between species, and Morrison et al. (2016a),
found that neither Wild‐ID nor HotSpotter performed
adequately for their data set. These differences in per-
formance may be partially due to differences in markings
across species. Both jaguars and ocelots bear prominent,
distinct markings; however, even among other felid species—
let alone other taxa—there is substantial variation in the
presence, shape, and intensity of markings. These programs
may not perform as well for species with less distinct mark-
ings, and certainly would not be appropriate for species
lacking natural markings.
Our findings also suggest that images are more likely to

match other images of the same quality, with the exception
of low‐quality ocelot images in HotSpotter. It is likely that
the low‐quality ocelot images we selected were exceptionally
poor, even compared with the low‐quality jaguar images.
Sometimes we used multiple images taken in a photo‐burst
to identify an individual but may have used the lowest
quality image in that burst in the matching program. Such
extremely low‐quality images were also present among the
jaguar images but were likely more prevalent among the
ocelot images, possibly because of their smaller size or

differences in their markings or movement patterns. This
likely also accounts for the significantly lower positive match
rate in both programs for low‐quality ocelot images versus
low‐quality jaguars.
Notwithstanding this inconsistency, the broad takeaway

remains the same: both programs were generally more
successful matching images of similar quality, so including
different quality images of the same individual should im-
prove matching rates. Matthé et al. (2017) also concluded
that the performance of multiple programs improved when
more potential matches were available, though they did not
specifically examine the effects of image quality. This may
be less important for data sets containing only high‐quality
photos—such as those collected with a handheld camera
under relatively controlled conditions—but it has important
implications about how to use software most effectively with
camera‐trap data (or any other data set with substantial
variation in image quality).
This observation is specific to image quality, but the

concept could be extended to apply to the selection of ref-
erence images in other ways. In camera‐trapping data, it is
fairly common to obtain photographs of only part of an
animal (e.g., only the head, or tail). Similarly, images of a
moving animal might be blurry and low‐quality around the
flank, but the legs are often relatively clear. Increasing the
size of a reference set to include other parts of individuals
could improve accuracy but also would increase both the
preprocessing time and the actual computing time. It might
be possible to mitigate this issue by creating separate ref-
erence databases for different parts of the animal (e.g., a
reference set just for heads or just for medial, right forelegs).
Test images would only need to be processed with the
applicable database.
We found both programs to be beneficial tools that im-

proved the efficiency of identifying individual animals,
both large and small species, in camera‐trap data. Con-
sidering only positive match rates, HotSpotter consistently
performed better; it had greater positive match rates than
Wild‐ID across all quality categories we examined, and
those differences were significant in 5 out of the 8 cate-
gories. HotSpotter’s negligible rate of false matches in-
dicates that most of the time, if it is able to make a match
at all, that match will be the top‐ranked suggestion.
Wild‐ID’s higher false match rate requires researchers to
spend additional time manually comparing the top images
to find some matches, but this is still substantially more
expedient than reviewing all possible matches by eye. In
this sense, a lower nonmatch rate is a more comprehensive
metric of overall matching success. Rates of nonmatches
were more similar between the programs, with only 3 of
the 8 differences being significant. In some cases (e.g.,
low‐quality jaguar images), Wild‐ID actually had lower
nonmatch rates than HotSpotter.
Neither program is fully automated; even though the

positive match rates are good—especially for higher quality
images—they are not foolproof. Human involvement is still
necessary to account for circumstances when the algorithms
fail—especially for lower quality images. Nonetheless,
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HotSpotter is closer to an automatic system in that often
only the top suggested match needs to be reviewed. Thus, it
may be better suited to users with little experience visually
matching individuals, or to studies in which matching speed
is a priority. However, for users with more experience at
visual identification, Wild‐ID may in some cases result in
more overall matches (especially for data sets with a large
number of low‐quality images). The tradeoff would be more
time to conduct the analysis because some of those matches
would require reviewing more candidate images within
Wild‐ID. Sometimes it may even be beneficial to use
Wild‐ID to reanalyze images that HotSpotter could not
match. If some of those images at least resulted in false
matches in Wild‐ID (so that a researcher could identify a
match from a reduced subset of images), this may still
save time compared with matching by eye alone all of the
images that HotSpotter failed to identify. However, the in-
creased time to process some images in both programs means
that this would likely only be beneficial in very large data sets.
Beyond considerations of matching performance,

HotSpotter includes several additional features that enhance
its utility. The ability to define chips within the program
eliminates the need to switch between third‐party programs
and expedites image preprocessing. Its interface is also more
interactive, allows users to view the image features being
extracted, and provides several options for users to visualize
how those features are being compared between images
(Appendix D; available online in Supporting Information).
Wild‐ID simply imports a directory full of images and
compares them all against each other; the user may choose
to include a set of reference images in this directory, but the
algorithm reprocesses these (i.e., re‐extracts features and
compares them between images—including other reference
images) every time another analysis is run. For a long‐term,
constantly growing data set, this inefficiency adds up over
time. By comparison, once a user has identified a match in
HotSpotter, an image can be assigned a name, which then
adds it to a database of known individuals. Images with the
same name are clearly cross‐referenced to each other. New
images can then be imported and compared with the ex-
isting database without the need to reprocess old images.
This also allows the database to grow and evolve over time
by adding new individuals or new images of existing in-
dividuals. In HotSpotter, it is easier to go back and review a
previous set of matches for an image whereas Wild‐ID only
records the accepted match for an image (and does not
cross‐reference this with any other images), so the only way
to review other previous matches is to rerun the entire
analysis.
The time it took for each program to match all jaguar

images may provide one rough point of comparison between
the programs, but we offer several words of caution when
considering this. The time to match a given image varies
substantially depending on image quality (i.e., how long the
user has to spend looking at potential matches before de-
ciding there is or is not a match), so a different set of images
could produce different results even if the total number of
images were the same. In application, considerations of the

time needed to use the programs should also take into ac-
count the substantial time needed to assemble a reference
database and preprocess images, which we do not include
here. Finally, any fundamental difference between the time
it takes each program to match images probably does not
scale linearly; this is due to differences in the ways the
programs calculate matches—for small sets of images, the
times may actually be fairly close, but as the number of
images grows, any difference likely becomes increasingly
pronounced.

Usage Recommendations
As camera‐trapping studies continue to proliferate,
computer‐aided systems to process the resultant data will
also continue to grow. Wild‐ID has already been success-
fully used in a relatively large number of studies, and our
results suggest that HotSpotter may offer even greater
benefits in the future. Our results suggest several best‐
practices that apply regardless of specific objectives or the
particular pattern‐recognition program used. To account for
potential variation in performance for different study spe-
cies, we echo the recommendation of Matthé et al. (2017)
that researchers conduct a trial analysis with a small subset
of their own data before fully committing to any particular
algorithm or attempting a large‐scale analysis. Both pro-
grams require the user to make the final determination
confirming or denying a match, so neither is able to fully
automate the individual identification process and re-
searchers should budget time accordingly. Finally, building
a reference database that includes multiple images of a given
individual should improve overall matching rates.
Additionally, our results suggest a number of situational

recommendations, depending on researchers’ particular ob-
jectives. First, users should consider the nature of their
photo‐data. For images of fairly uniform quality taken under
controlled conditions, pixel‐based software packages such as
those reviewed by Matthé et al. (2008, 2017) and Moya
et al. (2015) may provide better performance than either of
the feature‐based programs reviewed here. For images with
substantial variation in quality or alignment—including
camera‐trapping images—these feature‐based programs are
likely more appropriate. In this latter case, it becomes es-
pecially important to include in the reference database not
only multiple images of each individual, but a range of
image qualities for each. For short‐term studies in which a
single set of images is to be analyzed a single time, it may
not be necessary to build a true reference database and
Wild‐ID may be adequate for simply matching all of the
images against each other. However, for longer term or
ongoing studies in which multiple sets of images will be
analyzed and individuals in newer images compared with
previous data, HotSpotter’s ability to create and easily add
individuals to an ongoing database of images is especially
powerful.
Researchers also should consider several tradeoffs between

time and accuracy. For cases in which minimizing time is
more important than maximizing the programs’ matching
accuracy, HotSpotter seems to be faster in raw processing
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time, though this may be highly variable. In such
circumstances—especially for researchers experienced at
matching images by eye, who can be relatively efficient at
matching images the program cannot—it may also be
beneficial to minimize the repeat images for each individual
in the database in order to reduce preprocessing and com-
puting times. Conversely, if maximizing program accuracy
is more important than saving time, or if users are less
experienced at matching images by eye, expanding the
database could offer several improvements. In this case,
HotSpotter’s ability to create and maintain true databases
would again be invaluable. Users could expand a database—
or create separate databases—to include images of in-
dividuals at different orientations, or other parts of in-
dividuals like tails, legs, or heads that may still allow
identification even if a flank is heavily blurred or not visible
in some idiosyncratic images. In some circumstances, ac-
curacy might be maximized further by employing both
programs. Images could initially be processed in Hot-
Spotter, then images that it failed to match could sub-
sequently be processed in Wild‐ID. Any of these strategies
would entail increased preprocessing and computing time
but should also maximize the accuracy of the programs.
This evaluation provides guidance to researchers—
especially those with camera‐trap data—about how to use
such technology effectively as it continues to evolve.
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Additional supporting information may be found in the
online version of this article. Appendix A. Proportional
results of program tests. Appendix B. Significance tests
comparing programs. Appendix C. Significance tests com-
paring data sets. Appendix D. Hotspotter interface.
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