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Abstract

Population density estimates are necessary to inform management and conservation, yet are diicult to obtain for cryptic 

species such as carnivores, and often require intensive sampling. We implemented a single-survey, closed session, scat 

sampling protocol to estimate bobcat density using fecal DNA and spatial capture-recapture at two sites over ive sessions 

in Virginia, USA. We employed a Poisson encounter model to allow for multiple detections on scat transect segments over 

a single collection interval, and compared single session and multistrata (closed, multi-site, multisession) spatial capture-

recapture (SCR) approaches to estimate density for each site and session. We found improved precision for most estimates 

using the multistrata SCR approach, sharing data on baseline detection and individual movement across sites and sessions. 

We suggest the summer session estimates are representative of the resident population, that diferences in density between 

summer and winter are representative of potential net recruitment, and that diferences between consecutive summer ses-

sions are representative of the net recruitment realized for the population (dependent on survival and emigration). Finally, 

we assessed factors afecting precision in single session model estimates and provide recommendations to improve detection 

and reduce credible intervals that may be applicable across the bobcat range and to other carnivore species. The single survey 

transect methodology provides lexibility in monitoring carnivore populations speciically, or as part of concurrent monitor-

ing for multiple carnivore species. This methodology has potential to dramatically increase the efectiveness of conservation 

and management dollars, improving our ability to monitor carnivore populations and assess conservation needs and actions.

Keywords Felid conservation · Lynx rufus · Multistrata spatial capture-recapture · Noninvasive genetic sampling · 

Population density · Scat transects

Introduction

Populations of many carnivore species are decreasing (IUCN 

2017), and charismatic carnivores are commonly used as 

lagship or umbrella species in conservation (Andelman and 

Fagan 2000; Carroll et al. 2001; Sergio et al. 2006). As a 

result, the density and local abundance of many carnivores 

are critical metrics required for assessing population sta-

tus and conservation actions (May 1999). The recent rapid 

advancements of noninvasive sampling technology and 

quantitative approaches have improved our ability to monitor 

cryptic and wide-ranging carnivores (Karanth 1995; Waits 

and Paetkau 2005; O’Connell et al. 2010; Kelly et al. 2012; 

Davidson et al. 2014). However, sampling requirements for 

abundance estimates are intensive, often requiring multiple 

detector devices (e.g., camera-traps) at each sampling sta-

tion, large extent spatial coverage, and repeated visits to sites 

within a single session (Ruell et al. 2009; Sun et al. 2014; 

Wilton et al. 2014). As a result, monitoring of carnivores can 

be time consuming and costly (Rodgers and Janecka 2013).

Bobcats (Lynx rufus) are widespread across the United 

States (Kelly et al. 2016), and populations are reported to be 

stable or increasing in most states (Roberts and Crimmins 
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2010). Although bobcat populations in some regions are 

increasing, the status of bobcat populations in other areas 

is unknown or of concern (Riley et al. 2003; Litvaitis et al. 

2006). Sound estimates of abundance are needed to moni-

tor the status of these populations, detect possible increases 

or declines over time, and allow for explicit management 

decisions. Yet, despite the wide distribution of bobcats 

throughout North America, estimates of population abun-

dance and density are scant and often are not comparable 

due to non-standardized methodologies and difering sources 

of sampling bias (Thornton and Pekins 2015). Thus, bobcats 

provide a suitable case study for demonstrating the dii-

culties, and possible solutions, to improve monitoring for 

carnivore populations.

Most states rely on harvest statistics to track bobcat popu-

lation trends and inform management practices (Roberts and 

Crimmins 2010). However, the development of relatively 

inexpensive remotely-triggered cameras promoted studies 

of bobcats because, as with many other felid species, their 

recognizable spot patterns enabled researchers to identify 

individuals and generate encounter histories for capture-

mark-recapture applications (CMR) to estimate abundance 

(Heilbrun et al. 2006; Thornton and Pekins 2015). However, 

accurate photographic identiication of individuals typically 

requires images of both lanks of an animal, and maintaining 

sampling grids with two cameras at each station, at an extent 

appropriate to estimate population density of carnivores, 

can be intensive (both in time and inancial costs). In addi-

tion, variation in bobcat pelage (Young 1978; Croteau et al. 

2012), where markings are indistinct in some regions, such 

as the central Appalachians, can hinder accurate identiica-

tion of individuals and other carnivores that may not have 

temporary or permanent distinguishing marks. As a result, 

researchers have developed several alternative camera study 

designs and model advancements to improve the precision of 

estimates and reduce required sampling efort. These include 

incorporating a known marked population (e.g., telemetry 

collars) and single-side and hybrid camera station designs 

(McClintock et al. 2013; Sollmann et al. 2013; Alonso et al. 

2015; Augustine et al. 2018, in press).

As an alternative to camera-trap surveys, noninvasive 

genetics surveys have been employed to estimate population 

density (Russell et al. 2012; Davidson et al. 2014; Rodgers 

et al. 2014). A study in southern California found scat tran-

sects easy and eicient to implement and yielded reasonable 

ampliication success for identiication of individual bob-

cats from nuclear DNA (nDNA) microsatellites (Ruell et al. 

2009). Scat transects also allow for concurrent sampling of 

species that are not individually identiiable on camera, but 

may be sampled using fecal DNA (Morin et al. 2016a). How-

ever, the abundance models employed by Ruell et al. (2009) 

required multiple scat detection surveys repeated over a sin-

gle closed session to account for imperfect detection, which 

drastically increases the ield efort and cost of monitoring, 

and may violate assumptions of closure for single session 

abundance estimates.

Although often implemented with multiple sampling 

occasions, noninvasive genetic sampling and capture-recap-

ture methods do not necessarily require repeated surveys 

to estimate density, thus reducing required sampling efort 

(Miller et al. 2005; Morin et al. 2016a). Spatial capture-

recapture (SCR) models use the spatial information from 

trap locations to directly estimate density from the observed 

data (Royle et al. 2013). Additionally, recent development 

of a single microsatellite primer multiplex that distinguishes 

between felid species allows for rapid and eicient iden-

tiication of individuals at a reduced laboratory efort per 

species (Wultsch et al. 2014). Thus, the integration of non-

invasive genetic sampling with SCR methods may provide a 

useful method for monitoring felid populations, either as the 

target population, an umbrella species, or as a component of 

the carnivore guild (Carroll et al. 2001).

We employed a single occasion scat sampling protocol at 

two sites in the mountains of Virginia over ive diferent time 

periods (from July 2011 to July 2013) to estimate closed 

population abundance for each session. We used a recently 

developed microsatellite multiplex (Wultsch et al. 2014) to 

identify individual bobcats from fecal samples to estimate 

density during each session at both sites using three difer-

ent parameterizations of SCR models. First, we estimated 

density independently for each site and session using the 

basic SCR model  (SCR0). Second, we it a closed popula-

tion, multi-site, multisession (or strata) model to estimate 

density for each site and session, where detection and indi-

vidual movement were estimated separately for each season 

(summer or winter), but were constrained to remain the same 

for each site to allow for greater sample sizes in itting the 

detection function. Finally, we it a closed population, mul-

tistrata model, simultaneously estimating density for both 

sites and all ive sessions, with detection and individual 

movement constrained to be constant across sites and sea-

sons. We expected the multistrata approaches would improve 

precision in estimated parameters as long as the data were 

suicient to estimate parameters, and animal movement and 

detection were similar across sites, and possibly seasons. 

Finally, we evaluated factors afecting parameter estimation 

using this method and provide recommendations for imple-

mentation in other regions and for other felid species.

Methods

Field methods

We monitored two study areas, one each in two counties in 

western Virginia positioned along the eastern divide in the 
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northern Ridge and Valley Province of the central Appala-

chian Mountains (Bath and Rockingham Counties, Fig. 1). 

The forest structure and species composition in both study 

areas is primarily mature deciduous forest canopy including 

chestnut oak (Quercus prinus), red oak (Q. rubra), white oak 

(Q. alba), and tulip poplar (Liriodendron tulipifera), and 

the understory included rhododendron (Rhododendron maxi-

mum) and eastern mountain laurel (Kalmia latifolia). Public 

lands comprised large swaths of the study areas including 

the George Washington National Forest, state Wildlife Man-

agement Areas, and the Nature Conservancy Warm Springs 

Mountain Preserve. Elevation ranged from 350 to 1365 m 

(Bath), and 363 to 1335 m (Rockingham) and mean daily 

temperature ranged from a minimum of − 4.6 °C in Janu-

ary to a mean maximum of 31.6 °C in July (NOAA, public 

data 2012). Average annual precipitation was 97.79 cm, with 

most precipitation occurring between March and September. 

In addition to bobcats, there was a diverse carnivore guild, 

including coyotes (Canis latrans) and black bears (Ursus 

americanus).

Each study area was comprised of > 200 km of scat col-

lection transects within a 250 km2 area. Transects included 

dirt roads, hiking trails, and well-deined game trails on pub-

licly managed lands (predominantly National Forest) in each 

study area: 213 km in Bath County, 208.5 km in Rocking-

ham County. Trained ield technicians searched transects for 

carnivore scats, collected fecal DNA samples, and recorded 

GPS locations for ive closed sessions from July 2011 to 

July 2013 (3 summer sessions, and 2 winter sessions). Each 

closed session consisted of a single survey to allow adequate 

scat accumulation between clearing of transects and sample 

collection, and we cleared transects of scat 1 month prior to 

closed sessions to ensure temporal and geographic closure 

as described in Morin et al. (2016a). In addition to the sam-

ples collected for the closed sampling sessions to estimate 

density, we also collected samples during separate surveys 

in the same study areas for a diet study (Morin et al. 2016b), 

which we refer to as concurrent sampling sessions. For the 

purposes of increasing sample sizes for genetic analyses and 

individual matching, we supplemented the closed capture 

survey samples with additional bobcat genotype samples 

from the concurrent sampling sessions. However, these 

additional samples were not included in the closed spatial 

encounter histories used to estimate density over closed 

sessions.

Genetic analysis methods

We extracted DNA from feces using Qiagen QIAmp DNA 

stool kit (Qiagen,Valencia, CA, USA) in a lab designated 

for low-quality, low-quantity DNA and screened all samples 

using mitochondrial DNA species identiication multiplex 

(Davidson et al. 2014; De Barba et al. 2014) as described 

in Morin et al. (2016a). To determine bobcat individual 

genotypes, we combined 8 nuclear microsatellite loci iden-

tiication primers, F124, F85, FCA043, FCA090, FCA096, 

FCA126, FCA275, and FCA391 (Menotti-Raymond and 

O’Brien 1995; Menotti-Raymond et al. 2005), in a multi-

plex for polymerase chain reaction (PCR) ampliication and 

analyzed samples using the Applied Biosystems 3130xl ABI 

capillary machine (Applied Biosystems, Foster City, CA, 

USA) and associated software as described in Wultsch et al. 

(2014). We included a PCR positive (known bobcat tissue 

sample) and PCR negative control in each PCR plate to iden-

tify PCR failure or potential contamination.

Genotyping errors are common in low quality-low 

quantity DNA samples from allelic dropout and polymer-

ase errors (Taberlet et al. 1996). Thus, we used a two-step 

multitube process to cull poor quality nDNA samples. We 

initially performed PCR for each sample twice and removed 

samples with < 50% ampliication across the eight micros-

atellite loci. Then we repeated PCR 3 more times for each 

remaining sample to conirm alleles for each locus. We 

required two repetitions to conirm heterozygous loci and 

three repetitions to conirm homozygous loci to minimize 

potential genotyping errors. Additionally, we used RELI-

OTYPE (Miller et al. 2002) to conirm > 95% accuracy of 

genotypes observed in only a single sample.

Finally, we matched genotypes from diferent scat samples 

to the same individual bobcat using GenAlEx 6.501 (Peakall 

and Smouse 2006, 2012). We used the individual bobcat 

samples conirmed at all 8 loci to estimate  PIDsibs (Waits 

et al. 2001) in GenAlEx 6.501 to conservatively distinguish 

between genetically similar siblings  (PIDsibs < 0.001 at 6 loci 

required for a match,  PIDsibs = 0.0008 at all 8 codominant 

loci). We then matched all samples with conirmed alleles 

at 6 or more loci, resolved mismatch alleles, and removed 

samples that could not be conirmed as a match or a single 

genotype due to poor sample quality.

To ensure we only included bobcat samples in our spa-

tial capture-recapture data set, we screened for domestic cat 

(Felis cattus) samples in two ways. First, during the initial 

species identiication screening we were able to identify an 

additional fragment in the mtDNA control region (ampliied 

at both 104–106, and 129–130 bp ranges) that ampliied for 

domestic cats, but not bobcat samples (only ampliied at 

104–106 bp range). We removed all samples that ampliied 

at the species-speciic fragment size for domestic cats. Sec-

ond, following identiication of individuals based on nDNA 

genotypes, we compared all individuals to genotypes from 

19 samples identiied as domestic cats in a previous study 

using 7 of the same 8 markers (Mesa-Cruz et al. 2016). We 

screened the felid genotypes in STRU CTU RE version 2.3.4 

(Pritchard et al. 2000) with 7 loci, 2 assumed populations 

(bobcat and domestic cat), 100,000 burnin and 200,000 iter-

ations, and a parameter set including no admixture and an 
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independent allele model. Once we inalized the conirmed 

bobcat individual genotype database, we used samples from 

the 5 closed-session population monitoring surveys for each 

site to construct spatial capture-recapture encounter histories 

(10 SCR data sets) to estimate density.

Density estimation

We used three diferent spatial capture-recapture (SCR) 

models to estimate bobcat density (Electronic Supplemen-

tary Material (ESM) S1). First, we estimated density inde-

pendently for each site and session with ten separate closed 

session models  (SCR0, Royle et al. 2013, Chap. 5). For each 

site and session, we constructed a spatially-indexed encoun-

ter history using 0.5-km transect segments as “traps”, or 

detectors ( j ), and assigning each scat sample to the nearest 

detector using the Near function in the Proximity toolbox 

in ArcGIS (ESRI 2011). The model is hierarchical, consist-

ing of a process model assuming that individual animals ( i ) 

use space around a latent individual activity center ( s
i
 ), and 

that probability of detection decreases monotonically with 

distance away from the individual activity center (detection 

kernel, p ), represented by a scaling parameter (σ). Thus, 

detection of an individual along a transect segment ( j ) is 

dependent on the distance of the transect segment from 

the individual’s activity center, pij = �0 × e
−

(

1

2�

)2

deuc(si,xj)
2

 , 

where xj is the location of trap j , and �
0
 , is the baseline 

encounter rate, or expected rate of detection if a transect 

segment is at the same location as an individual’s activity 

center.

We used data augmentation to estimate the count of indi-

viduals that were present in the state space during a sampling 

session, but not detected (Royle and Young 2008). We set 

a large upper bound ( M ) for the maximum number of pos-

sible individuals within S for each site and session (Table 1). 

We represented undetected individuals with encounter his-

tories consisting of all zeros, as they were not detected dur-

ing the survey. We associated an indicator variable ( zi , the 

outcome of a Bernoulli trial) with each possible unobserved 

activity center to estimate if it was a real individual pre-

sent but not detected during the study ( zi = 1 ), or if the 

augmented encounter history was a structural zero and not 

part of the population ( zi = 0 ), with a binomial distribution 

characterizing all trials ( � ). Density ( ̂D ) is derived by sum-

ming the number of individuals detected and the proportion 

of possible undetected individuals estimated to be real ( ̂N ), 

and dividing by the area of S . We used a Poisson encounter 

model to allow for multiple detections of an individual at 

a single detector, and for each site, we used a state space 

size representative of a bufer ≥ 2� (Table 1), as density 

no longer scales with S beyond this threshold (Royle et al. 

2013).

We formatted data using the scrbook package (Royle 

et al. 2014) in R (R Core Team 2015) and implemented each 

model using the rjags (Plummer 2014), and coda (Plummer 

et al. 2006) packages in R. Model settings for each inde-

pendent site and session  SCR0 model included 3 Markov 

chain Monte Carlo (MCMC) chains with 50,000 adaptations 

for the Metropolis-within-Gibbs algorithm to reduce slow 

mixing in chains and increase efective sample sizes. After 

adaptation, we sampled 100,000 iterations from the posterior 

distributions of each monitored parameter ( ̂�
0
 , �̂ , �̂ , N̂ , and 

D̂ ) at a thinning rate of 1 (no thinning), and discarded the 

irst 50,000 iterations for burn-in. These settings were exces-

sive in efort. However,  SCR0 models for two sessions at one 

site displayed poor mixing and unidentiiable parameters, 

and the increased efort allowed us to fully evaluate the lack 

of it for these instances while keeping settings for all sin-

gle session models consistent. We assessed MCMC conver-

gence by visually inspecting trace plots for each monitored 

parameter, and comparing R̂ statistics to 1.1 (Gelman and 

Rubin 1992). We reported the posterior means and standard 

deviation, medians, and 95% credible intervals (CRI) for �̂
0
 , 

�̂ , and �̂ , but reported the preferential, unbiased posterior 

mode for D̂ (Chandler and Royle 2013), estimated using the 

MCMCglmm package (Hadield 2010). We also monitored 

estimated locations of activity centers ( ̂s
i
 ), and the outcome 

of each Bernoulli trail ( zi ) for of the inal 50,000 iterations 

of the independent its of the  SCR0 models. This allowed 

for estimation of realized density surfaces for each site and 

session with a itted model (ESM S2).

Although single session models are useful when only one 

site or season of data is available, sharing detection infor-

mation across sites and sessions should improve estimation 

of detection and scaling parameters as a result of increased 

sample size and result in improved precision in density esti-

mates for each site and session (Royle and Converse 2014). 

Thus, we it two diferent multistrata SCR models constrain-

ing baseline detection and scaling parameter ( � ) across sites 

or sessions. The multistrata model approach simultaneously 

estimates density for each site and season (a multi-site, mul-

tisession model). First, we used dummy variables for season 

to estimate a beta coeicient for both baseline detection and 

� separately for each season (summer or winter for the 5 

sessions), but constraining the parameters to be the same 

Fig. 1  Approximately 400  km of scat collection transects were 

located in Bath and Rockingham Counties in Virginia, USA 

(> 200  km in each county). Transects were designated on establish 

dirt roads, hiking trails, and well used game trails and divided into 

0.5-km segments to use as detectors for spatial capture-recapture 

models. This region of Virginia is in the Ridge and Valley Province 

of the Appalachian Mountains, and there was diferential variability 

in elevation of transect segments between the two sites, as shown in 

the histograms 

◂
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across sites  (SCRseas). This allowed for greater information 

about individual home range movement shared across sites, 

expected to improve estimation of density for the site with 

very low number of detected individuals, but assumes indi-

viduals display similar home range movements in the two 

study areas, and increased the number of estimated param-

eters. Second, we it a multistrata model that estimated 

density and data augmentation parameter ( � ) for each site 

and session, but constrained baseline detection and � to be 

the same across sites, and also across all sessions  (SCRms). 

This model allowed for the greatest shared information 

across sites producing the most detection of individuals to 

improve estimation of density for each session and site, and 

reduced the number of parameters required to be estimated. 

It assumes individuals across study sites demonstrate simi-

lar movement from home range activity center resulting in 

detection regardless of season. This assumption might be 

reasonable for fecal DNA sampling of territorial animals 

such as bobcats that may mark the extent of individual 

territories across seasons, even if home range utilization 

changes within a territory, or species that do not have difer-

ential seasonal home range use. For both multistrata models, 

we included three MCMC chains with 2000 adaptations for 

the Metropolis-within-Gibbs algorithm and sampled 10,000 

iterations from the posterior distributions of each monitored 

parameter at a thinning rate of 1, and discarded the irst 

2000 iterations for burn-in. For the multistrata approach, 

state space and trap locations were diferent between sites, 

but held constant between sessions (1128.71 km2 state space 

area for Bath County and 1211.97 km2 state space area for 

Rockingham County), M was held constant for all sites 

and seasons (450 maximum individuals detected and not 

detected within the state space for each site and season), and 

� was estimated for each site and session (ESM S1).

Finally, to guide future sampling and monitoring eforts, 

we were interested in assessing factors that could improve 

precision in model estimates of D and � . Using the output 

from the independent runs of the  SCR0 models for each site 

Table 1  Capture and spatial recapture rates, model settings, and parameter estimates for spatial capture-recapture  (SCR0) model to estimate bob-

cat density for each site and session in Bath and Rockingham Counties, Virginia, July 2011–July 2013

a  Model setting for data augmentation—the maximum number of possible individuals (detected and undetected) in the state space
b  Area of the state space within which all possible individuals (detected and undetected) are located
c  The model estimates the total number of individuals ( ̂N ) within the state space ( S ). Density ( ̂D ) is derived byN̂∕S

d  Scaling parameter related to home range size that estimates distance an individual may be detected from its center of activity ( s
i
)

e  Baseline encounter rate—the expected detection rate of an individual if a trap is located at the animal’s activity center
f  Data augmentation parameter—the probability that proposed undetected individuals (M individuals detected) are actual individuals in the pop-

ulation
g  Number of spatial recaptures number of times observed

Site session Individuals 

captured (total 

captures)

Count of indi-

viduals recap-

tured (spatial 

recaptures)

Ma Sb  (km2) D̂
c
 (95% CRI) �̂

d (95% CRI) �̂
0

e
 (95% CRI) �̂f (95% CRI)

Bath Jul 2011 16 (21) 4  (24)g 650 874.29 13.88/100 km2 

(7.78, 61.76)

1.43 km (0.77, 

3.04)

0.02 (< 0.01, 

0.07)

0.34 (0.10, 0.83)

Bath Feb 2012 33 (48) 6  (24, 3, 5) 500 874.29 25.84/100 km2 

(13.95, 50.21)

1.70 km (1.13, 

2.70)

0.02 (0.01, 

0.05)

0.50 (0.24, 0.88)

Bath Jul 2012 13 (19) 5(25) 300 874.29 7.08/100 km2 

(3.77, 25.62)

1.68 km (0.98, 

2.96)

0.03 (0.01, 

0.08)

0.30 (0.11, 0.75)

Bath Mar 2013 30 (56) 12  (26,  33,  43) 250 759.08 13.96/100 km2 

(9.62, 22.40)

1.27 km (0.98, 

1.70)

0.08 (0.04, 

0.14)

0.45 (0.28, 0.68)

Bath Jul 2013 18 (26) 5  (23,  32) 400 759.08 12.35/100 km2 

(7.38, 35.31)

1.11 km (0.72, 

1.78)

0.06 (0.02, 

0.13)

0.31 (0.14, 0.67)

Rockingham Jul 

2011

14 (29) 4  (22,4,6) 200 887.85 6.65/100 km2 

(3.38, 11.60)

1.50 km (1.03, 

2.26)

0.08 (0.03, 

0.17)

0.29 (0.14, 0.52)

Rockingham Feb 

2012

11 (15) 2  (22) NA NA NA NA NA NA

Rockingham Jul 

2012

18 (26) 7  (26, 3) 300 948.692 10.84/100 km2 

(6.64, 26.14)

1.58 km (1.04, 

2.59)

0.03 (0.01, 

0.07)

0.44 (0.21, 0.83)

Rockingham 

Mar 2013

9 (12) 2(22) NA NA NA NA NA NA

Rockingham Jul 

2013

19 (41) 8  (23,  35) 250 887.85 9.35/100 km2 

(5.29, 16.11)

1.63 km (1.63, 

2.40)

0.05 (0.02, 

0.10)

0.33 (0.18, 0.58)
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and season, we calculated the coeicient of variation (CV; 
SE

mean
∗ 100 ) for D̂ and �̂ . The CV is a measure of dispersion 

around the mean, and lower CV values indicate better preci-

sion. We compared CVs by three metrics: (1) total number 

of individuals detected, (2) an index of spatial recapture suc-

cess (number of spatial recaptures/individuals with spatial 

recaptures), (3) the CV for �̂
0
 , the baseline encounter rate, 

and (4) �̄
0
 from model estimates from each sites and session. 

We expected that CVs for D̂ and �̂ would decrease relecting 

improved precision, with increased spatial recapture success 

and with greater baseline detection, and we used the results 

to make recommendations to reine future sampling and 

inform study design recommendations for implementation.

Results

We collected a total of 2025 fecal samples in the two study 

areas during the ive closed sessions for density estimation. 

Of those samples, we identiied 54.57% as bobcat using the 

mtDNA species multiplex, and we genotyped these 1105 

samples, and an additional 78 bobcat fecal samples collected 

during concurrent sampling within both study areas for a 

total of 1183 samples. We successfully ampliied nDNA 

at 50% of loci (4 loci) for 480 samples (0.41 ampliication 

success rate), and conirmed genotypes at 6 loci for 373 

samples resulting in 0.32 conirmed genotype success rate 

(295 conirmed genotype samples from the 2 sites over the 5 

density sampling sessions). Mean allelic dropout/sample for 

conirmed genotypes was 0.19 (range 0–0.59), and the mean 

number of false alleles/sample for conirmed genotypes was 

0.03 (range 0–0.28). We detected one set of samples mis-

matched at 1 locus that we were unable to resolve, and we 

removed the sample with lower ampliication success and 

greater number of false alleles (poor sample quality). No 

individuals mismatched at 2 out of 8 loci. In addition, no 

samples were identiied as domestic cat in the STRU CTU 

RE analysis, conirming our ability to screen for domestic 

cats using the mtDNA multiplex. In total, we identiied 118 

individual bobcat genotypes across the 2 study sites. For 

the closed session population monitoring, we successfully 

conirmed 108 individual bobcats over 5 sessions at the 2 

study sites (63 individuals/171 conirmed samples in the 

Bath County study area, and 45 individuals/124 conirmed 

samples in the Rockingham study area).

For the independent  SCR0 models, we were unable to 

adequately it SCR models to data for the two winter ses-

sions at the Rockingham site. Due to the insuicient num-

ber of recaptures at this site (11 individuals with 2 spatial 

recaptures in February 2012, and 9 individuals with 2 spatial 

recaptures in March 2013), the data augmentation parameter 

was unidentiiable (returned the uniform distribution of the 

prior), and resulting density estimates increased with even 

unrealistic increases in M (the model was not able to distin-

guish structural zeros for these two data sets, and therefore 

could not produce reliable density estimates). However, we 

were able to it  SCR0 models and estimate density for all 

other sessions across the two study areas (Table 1). Although 

posterior distributions and 95% credible intervals overlapped 

for all sessions, density estimates were generally lower in 

Rockingham compared to Bath County (Fig. 2). Posterior 

modes for density estimates for the summer sessions in 

Rockingham County were relatively consistent. Density in 

Fig. 2  Violin plots of posterior distributions of bobcat density esti-

mates (top) and SCR scaling parameter � (bottom). The ive sampling 

sessions are shown in panels left to right for the Bath County (BA: 

left in each panel) and Rockingham County (RO: right in each panel) 

study areas, Virginia, USA. Light colored violins represent estimates 

from independent single session  SCR0 models and dark colored vio-

lins represent estimates from the multistrata  SCRms model, where 

baseline detection and � are constrained to be constant across sites 

and sessions. Thick lines for each violin plot represent the interquar-

tile range, and thin lines represent the 95% credible intervals (CRI). 

Mean parameter estimates are represented by white circles. In the top 

plot, posterior modes for density estimates are dark circles. In the bot-

tom plot, the 95% CRI for the single estimate of � from the  SCRms are 

represented by the hatched polygon. Encounter histories were gener-

ated from individual bobcats identiied using nDNA microsatellites 

extracted from fecal samples collected while walking transects. Den-

sity was estimated using a single survey sampling protocol and spa-

tial capture-recapture models for each site, over 5 sessions from July 

2011 to July 2013. The winter scat collection sessions did not result 

in suicient detections to it  SCR0 models, and estimates for those 

sessions are omitted (February 2012 and March 2013)
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Bath County was greatest in February 2012, but also rela-

tively consistent across summer sessions.

We were unable to fit the  SCRseas model, estimating 

beta coeicients to allow baseline detection and � to difer 

between summer and winter due to the greater number of 

parameters, relatively small sample size, and poor MCMC 

mixing. However, we were able to it the  SCRms model and 

estimate density for each session, including the two win-

ter sessions for the Rockingham site that were inestima-

ble with the single session model approach (Table 2). The 

 SCRms density posterior distributions were more precise and 

showed less spread compared to the  SCR0 density posterior 

distributions, and the  SCRms 95% CRI for � overlapped the 

 SCR0 95% CRI of � for all estimable sessions (Fig. 2). Den-

sity estimates from the  SCRms model were again higher in 

the winter compared to relatively consistent summer density 

estimates in the Bath County study area and ranged from 

8.52 to 20.27 bobcats/100 km2 (posterior modes) across sea-

sons. However,  SCRms D̂ was lower in the winter in Rock-

ingham County study area and ranged from 5.93 to 12.72 

bobcats/100 km2 across seasons, resulting in similar summer 

density estimates between sites (Fig. 2; Table 2).

Coeicients of variation demonstrated how precision in 

�̂ and D̂ both increased with all metrics evaluated for single 

session model estimates (Fig. 3). A decrease in precision, 

or spread around the mean, resulted in an increase in CV 

values, and smaller CV values indicated better precision. 

Increasing numbers of individuals detected and increasing 

spatial recaptures/individuals with spatial recaptures both 

decreased spread around the mean of the posterior distribu-

tions of �̂ and D̂ . Mean baseline encounter rate (�
0
) also 

improved precision, and increasing precision in baseline 

detection estimates displayed the tightest relationship with 

increasing precision in �̂ and D̂.

Discussion

We were able to estimate bobcat densities by itting SCR 

models to encounter histories generated using noninvasive 

genetic sampling and single-survey scat collection transects 

over multiple seasons and sites, despite inding that bobcat 

densities were relatively low in the region. This novel pro-

tocol provides a lexible methodology for monitoring carni-

vores compared to previous sampling protocols, by reducing 

the required multiple survey, single session sampling efort, 

and instead, allowing for additional monitoring sessions for 

the same approximate efort. By sharing information over 

multiple seasons and sites, instead of investing in repeated 

surveys within a single session, we increased number of 

samples available to conirm genotype matches, improved 

precision in model estimates, and compared density esti-

mates for both sites over time that could be used to evalu-

ate population growth and potential recruitment. We assess 

limitations in the approach and provide recommendations 

for future implementation for bobcats and other carnivores 

below.

Bobcat density estimates from the Bath and Rockingham 

County study areas were at the low end of those reported 

across the bobcat range (Thornton and Pekins 2015). Pre-

vious studies across the two study areas have found low 

densities of both coyote populations (approximately 4–8 

coyotes/100  km2; Morin et  al. 2016a) and white-tailed 

deer (Odocoileus virginianus) populations (approximately 

20–150 deer/100 km2; Montague et al. 2017), indicative of 

the generally low carrying capacity of the regional habi-

tat (DeCalesta 1997; Diefenbach et al. 1997). Low popu-

lation density can result in poor precision or inestimable 

parameters (Williams et al. 2002). However, by including 

detections over multiple sessions, we were able to improve 

Table 2  Parameter estimates for the multistrata spatial capture-recap-

ture  (SCRms) models to estimate bobcat density for each site and 

session in Bath and Rockingham Counties, Virginia, July 2011–July 

2013

SCRms constrained �
0
 and � to be constant across sites and seasons. 

The model estimates the total number of individuals ( ̂N ) within the 

state space ( S ). Density ( ̂D ) is derived by N̂∕S . Data augmentation 

parameter—the probability that proposed undetected individuals (M 

individuals detected) are actual individuals in the population. For the 

multistrata approach, state space and trap locations were diferent 

between sites, but held constant between sessions (1128.71 km2 state 

space area for Bath and 1211.97  km2 state space area for Rocking-

ham), and M was held constant for all sites and seasons (450 maxi-

mum individuals detected and not detected within the state space for 

each site and season), and � was estimated for each site and session. 

For the multistrata model, �̂
ms

 = 1.37 km, 95% CRI (1.21, 1.56), and 

�̂
0 ms

 = 0.04, 95% CRI (0.03, 0.06)

Site session D̂
ms

 (95% CRI) �̂
ms

 (95% CRI)

Bath Jul 2011 10.28/100 km2 (6.20, 

16.30)

0.26 (0.15, 0.41)

Bath Feb 2012 20.25/100 km2 (14.62, 

29.86)

0.53 (0.36, 0.75)

Bath Jul 2012 8.52/100 km2 (4.87, 

13.73)

0.21 (0.12, 0.35)

Bath Mar 2013 20.27/100 km2 (13.11, 

28.00)

0.48 (0.32, 0.70)

Bath Jul 2013 10.37/100 km2 (7.00, 

18.07)

0.29 (0.17, 0.46)

Rockingham Jul 2011 9.59/100 km2 (5.45, 

15.02)

0.25 (0.14, 0.41)

Rockingham Feb 2012 6.67/100 km2 (4.04, 

12.71)

0.20 (0.11, 0.35)

Rockingham Jul 2012 11.80/100 km2 (7.34, 

18.65)

0.32 (0.19, 0.51)

Rockingham Mar 2013 5.93/100 km2 (3.14, 

10.89)

0.17 (0.08, 0.30)

Rockingham Jul 2013 12.72/100 km2 (7.84, 

19.64)

0.34 (0.21, 0.53)
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precision and estimate density. Density estimates from the 

 SCRms model suggest there is an increase in number of 

individuals at the Bath County site in the winter sessions, 

compared to the summer sessions. As suggested for coyotes 

(Morin et al. 2016a), it is possible more individual bobcats 

are detected at this site during the winter session when 

bobcats are more mobile and potentially attempting to dis-

perse from their natal range. Little information is available 

Fig. 3  Scatterplots showing 

efects of four diferent metrics 

on precision of the posterior 

distributions for density ( ̂D , left 

column) and the scaling param-

eter ( � , right column) estimates, 

as measured by coeicients of 

variation (CV). Metrics evalu-

ated included mean baseline 

encounter rate ( ̂�
0
 , top row), 

CV for the posterior distribution 

of �̂
0
 (second row), number of 

spatial recaptures/individuals 

with spatial recaptures in a 

session at a site (a measure of 

spatial recapture success, third 

row), and number of individu-

als detected in a session at a 

site (last row). As precision 

increases, CV values decrease, 

and lower CV values are desir-

able

λ
0
¯
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on bobcat dispersal (Kamler et al. 2000) since dispersal is 

diicult to observe. However long distance dispersal move-

ments (> 100 km) have been reported (Nielsen and Woolf 

2003). Thus, the winter session may include not only resi-

dent bobcats with established home ranges, but also indi-

viduals attempting to immigrate into the local Bath County 

population, still detected during a short foray into the study 

area. If we consider the summer session estimates to be rep-

resentative of the adult resident population, any diference 

in density between summer and the following winter session 

could represent potential recruitment into the population for 

the following year, while the diference between consecutive 

summer sessions would be the net recruitment realized for 

the population (dependent on survival, successful immigra-

tion, and emigration). Conversely, density estimates from 

the Rockingham study site remained relatively consistent 

across seasons and years (wide overlap of 95% CRI). This 

may relect an unchanging population, low potential recruit-

ment, or the very low density may represent a limitation in 

the approach to detecting population changes over short peri-

ods of time at the current sampling intensity for the study 

area extent.

The monitoring and estimation methods demonstrated 

provide multiple advantages to previous eforts to estimate 

bobcat densities, and have potential to improve monitor-

ing of carnivore populations worldwide. The single-survey, 

scat collection protocol reduced ield efort/km of transects 

surveyed compared to those protocols and estimation meth-

ods that require multiple survey occasions within a closed 

session (Ruell et al. 2009). Thus, instead of repeated visits 

within a single session, we were able to monitor transects 

for additional seasons. The ield costs to cover the same area 

we surveyed with cameras at an adequate spacing to estimate 

density (< 2σ, Sun et al. 2014) would likely have been much 

greater than the costs to implement a single scat survey, 

when considering costs of cameras at each station and ield 

efort to maintain the camera trap grid during a closed ses-

sion. For example, if we wanted to estimate density for the 

Bath County study area in summer 2012, based on the mean 

 SCRms estimate of σ (1.37 km), spacing between camera sta-

tions would need to be < 2.74 km. To cover the same area 

surveyed using scat transects (a 250 km2 grid), a minimum 

of 40 camera stations would be required (2 cameras/station 

to identify individuals using both lanks, but see Augustine 

et al. 2018, in press), and this would likely be insuicient to 

estimate density with reasonable precision (see recommen-

dations on spatial extent below). Additional site visits may 

also be required for a 1 month survey, depending on the bat-

tery life and memory capacity of the cameras. Ultimately, the 

costs of ield efort and equipment must be balanced against 

the costs of compiling data, including DNA extraction and 

PCR, postprocessing of photographs, and success rates of 

identiication of individuals for both approaches. However, 

the use of noninvasive genetics also allows for additional 

population and landscape genetics analyses, including eforts 

to describe dispersal and immigration (Janečka et al. 2007; 

Croteau et al. 2010; Wultsch et al. 2016), providing valuable 

additional information about population dynamics.

We provide several recommendations on general sam-

pling implementation, and suggest reinements and modiica-

tions to improve on resulting estimates for cryptic carnivore 

species. First, a limitation to the scat transect methodology 

is that sampling is restricted to existing trails and roads. As 

a result, some areas may not be surveyed. For example, we 

were unable to it single session  SCR0 models to data sets 

for the two winter sessions at the Rockingham site due to 

poor detection. Because we were able to adequately sample 

bobcats in winter at the Bath County site, poor detection 

does not appear to be related to general climate conditions, 

but perhaps to diferential space use during the winter in 

relation to our sampling transects. While the overall eleva-

tion between the sites was generally equivalent, the spatial 

arrangement of established dirt roads and hiking trails used 

as transects, resulted in a greater proportion of transect seg-

ments at higher elevations at Rockingham (Fig. 1). Thus, if 

bobcats spend more time in more protected areas at lower 

elevations during harsh winter months, detection would 

decrease. There is also a greater number of hound hunts in 

the Rockingham area in the fall and winter months. Bobcats 

may respond by retreating from frequently used roads and 

trails along ridgelines, decreasing opportunities for detection 

on scat transects at that study site. Thus, greater stratiication 

of transect segments across the elevation gradient, incorpo-

rating more game trails, and supplemental use of cameras 

in areas without trails and roads, could improve detection 

and allow for density estimation in the Rockingham study 

area (Harmsen et al. 2010). Diferential use of areas with 

available transects should be considered when implementing 

scat transect surveys. If suitable transects are not available, 

alternative sampling methods such as using detection dogs, 

sampling multiple data types, and unstructured spatial sam-

pling should be considered, but will likely result in greater 

efort and inancial cost (Russell et al. 2012; Sollmann et al. 

2013; Davidson et al. 2014).

Second, precision of both the single session and multi-

strata models could be improved. As precision was directly 

related to number of individuals detected, increasing the 

overall survey area could allow for better estimation, as 

could increasing the density of transects in some areas to 

increase potential for spatial recaptures (Royle et al. 2013, 

Chap. 10; Sun et al. 2014; Wilton et al. 2014). As in Morin 

et al. (2016a), we also suggest extending the closed session 

allowing for more scat deposition that would increase spatial 

recapture rates, as long as demographic closure is not vio-

lated. Sampling strategies that increase DNA ampliication 

rates could also increase baseline detection of individuals, 
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which would improve precision for density estimates. While 

our results demonstrate that a 1-month sampling interval can 

be efective for estimating population density for this species 

in this geographic region, this interval will vary by species, 

region, local environmental conditions, population density, 

and detection rates (Lonsinger et al. 2015; Woodruf et al. 

2015). We were able to amplify samples with a 32% suc-

cess rate for conirming genotypes over a 1-month interval. 

However, while the single-survey method decreased efort 

compared to multiple occasion surveys, it is possible that 

collecting samples every 2 weeks in our study area could 

decrease environmental degradation and improve amplii-

cation rates. The resulting dataset could then be treated as 

a single occasion (summed over all occasions) or multiple 

occasion sampling protocol, due to the use of the Poisson 

encounter model. We suggest an initial pilot study evaluat-

ing DNA degradation and scat deposition rates would aid 

in identifying the appropriate length of closed sessions and 

whether additional surveys may be required (Lonsinger 

et al. 2015; Woodruf et al. 2015). In addition, home range 

movements for felids can difer depending on sex, which can 

inluence detection probabilities and resulting precision of 

parameters (Sollmann et al. 2011). Including sex-speciic 

estimation of �
0
 and � could improve model estimates if 

there is suicient data to support estimation of additional 

parameters, but handling of individuals with unknown sex 

identiication, which can result from partial genotypes from 

low-quality DNA, should be carefully considered.

Finally, timing and frequency of closed sessions utiliz-

ing this method will depend on study objectives. If only 

one session is planned, greater sampling intensity over 

a larger extent is necessary to estimate parameters with 

precision. Similarly, as we were unable to it the more 

complex  SCRseas model with our data, sampling should 

be intensiied to increase sample sizes over multiple ses-

sions if there are large diferences in seasonal movement 

and detection. However, if multiple sites or sessions are 

monitored, and some parameters can be constrained to be 

the same across sites and sessions, intensity of each single 

session may be reduced if a multistrata SCR approach is 

employed. If the primary objective is to monitor density 

for a region, we recommend a summer survey for our study 

sites to represent the resident adult bobcat population. 

If assessing trends in population growth is the primary 

objective, we also recommend summer sessions, but large 

intervals including multiple years between surveys will 

be required due to the nature of demographic stochastic-

ity, as well as precision in estimates, even if improved. 

However, there are also beneits to winter sampling of 

bobcats in our region, separate or in conjunction with, 

summer sampling. These include higher individual identi-

ication success rates, estimating potential net recruitment, 

providing realized density surfaces (ESM S2) for use in 

spatially-explicit winter harvest, evaluating seasonal habi-

tat associations with local bobcat densities, and identifying 

areas with higher potential for predation pressure on prey 

populations compromised by snowfall. Thus, monitoring 

objectives, individual identiication success rates, species 

life history and local ecology should be carefully consid-

ered in planning the timing of sampling sessions.

Conservation and monitoring are expensive and resources 

are limited (McCarthy et al. 2012). As a result, new, ei-

cient methodologies are needed for monitoring low-density 

populations including many endangered carnivore popula-

tions worldwide. Our single-survey, scat transect sampling 

method, combined with a single microsatellite multiplex 

and SCR hierarchical models, reduces sampling efort and 

provides an advantage to previously employed methods of 

density estimation for felid populations. Employing single 

survey sessions increases the number of sessions that can be 

conducted including surveys across more sites, as repeated 

surveys within a session at a site are no longer required. In 

addition, density estimates for felids without visually iden-

tiiable marks are obtainable using this method, and because 

only one microsatellite multiplex is required, multiple felids 

can be sampled simultaneously (Wultsch et al. 2014) without 

additional ield or laboratory costs. As a result, this method-

ology has potential to dramatically increase the efectiveness 

of conservation dollars and improve understanding of wild 

felid ecology and the ability to monitor carnivore popula-

tions and assess conservation needs and actions.
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