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Monitoring Coyote Population Dynamics With
Fecal DNA and Spatial Capture–Recapture
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ABSTRACT Estimating coyote (Canis latrans) density and other demographic parameters is difficult,
particularly for populations that exist at low density. This is the situation for recently established coyote
populations in the eastern United States where populations may be below carrying capacity and growth
unregulated. We used non-invasive fecal DNA collected from 5 scat sampling sessions over 2.5 years to
estimate population parameters (i.e., density, apparent survival, recruitment, and population growth) for
coyotes at 2 different sites in the Ridge and Valley region of the central Appalachians in Virginia, USA. We
identified individuals using microsatellite genotypes and estimated apparent survival for the local population
at both sites across the 5 sessions in a single Cormack–Jolly–Seber model. We estimated density for each site
and session separately using single session spatial replicates of 0.5-km transect segments as traps in a spatial
capture–recapture model. Finally, we derived estimates of recruitment and population growth using an ad hoc
robust design approach. We were able to estimate population parameters, even though coyote densities at
both sites were low. Generally, derived recruitment and apparent survival were inversely related across sites,
however, precision in estimates was poor. Thus, although there appeared to be some differences in
demographic estimates for local coyote populations, uncertainty in parameters was too great to detect changes
in demographic rates over short periods of time using ad hoc robust design. However, the non-invasive
genetic sampling and spatial capture–recapture approach provides a useful methodology and framework for
future research intended to estimate population dynamics for coyotes. This method will also be useful for
other species that occur at low densities, over large spatial scales, and lack distinguishing marks for camera-
trap surveys. Finally, we believe this method will allow for detection of population trends over greater periods
of time, and we consider alternate sampling strategies and modeling approaches that may improve the ability
to estimate demographic rates of change for coyote populations using noninvasive genetics and spatial
capture–recapture. � 2016 The Wildlife Society.

KEY WORDS ad hoc robust design, apparent survival, Canis latrans, coyote, density dependence, density estimation,
non-invasive genetic sampling, population dynamics, recruitment, spatial capture–recapture.

Over the last 2 centuries coyotes (Canis latrans) have
expanded their range from the central plains of the United
States, prior to European settlement, to most of North
America (Bekoff 1978, Parker 1995, Gompper 2002a, Kays
et al. 2008). As a result, human-coyote conflicts have
increased, inciting concerns about the potential impacts to
prey and competitors (Litvaitis and Harrison 1989, Gompper
2002b, Kilgo et al. 2012). As coyote populations expanded
into each new area, the natural resource agencies and state
legislatures often responded with attempts to limit expansion,
reduce coyote densities, and manage conflict with humans
using lethal removals (Houben 2004). However, lethal

removal efforts have yielded little to no success (Conner
and Morris 2015). Therefore, it is of practical use to obtain
estimates of coyote demographic parameters to evaluate
population responses to management efforts and to under-
stand why current management strategies are unsuccessful.
Management of animal populations requires influencing

�1 of 4 population processes (i.e., inputs [births and
immigration] and outputs [mortality and emigration]), and
success is ideally measured by changes in local abundance or
density (Cole 1954, Nichols et al. 2000, Williams et al.
2002). Thus, estimating and understanding local densities
and population dynamics is critical to making informed
management decisions (K�ery and Schaub 2012). Eastern
coyote populations may have high mortality rates, exhibit
complex adaptive social structures, and can occur at low
densities over broad spatial scales (Kamler and Gipson
2000, Patterson and Messier 2001, Hinton et al. 2015). As
a result, obtaining unbiased estimates of coyote population
parameters has been difficult and often requires problematic
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assumptions about closure, counts, or detection (Bozarth
et al. 2015, Gulsby et al. 2015, Hansen et al. 2015).
Effectively estimating population parameters requires a

way to count individuals and a way to account for imperfect
detection of individuals. Traditionally, these concepts have
been addressed with capture–recapture models using
repeated encounters with marked individuals over time
through the visual observation of natural or applied
individual marks (Otis et al. 1978, Williams et al. 2002).
Application of capture–recapture methods has been limited
with coyotes because they are difficult to capture and
recapture at encounter rates required for reliable parameter
estimation (Gulsby et al. 2015). Although camera traps have
improved our ability to monitor many carnivore populations
(O’Connell et al. 2010, Meek et al. 2014), coyotes do not
typically have distinguishing marks to allow for use of
traditional camera trap designs. Although it is possible to
collar coyotes and use mark-resight models (McClintock and
White 2009; Sollmann et al. 2013a,b; Alonso et al. 2015)
based on camera trap resightings of collared individuals at
specific locations, this would violate the assumption of
equal capture–recapture probabilities across space, resulting
in biased estimates (Royle et al. 2013b). In addition, coyote
movement and space use are highly variable (Hinton et al.
2015). Therefore, recent development of unmarked indi-
vidual count models that use minimal encounter information
(Royle 2004, Chandler and Royle 2013) are unemployable
because model assumptions of similar movement, critical for
accurate estimates, are unlikely met for coyote populations.
Finally, coyote individual behavior and space use can result
in an unknown amount of capture heterogeneity determined
solely by where a capture grid is placed in relation to
individual home ranges. This likely violates assumptions
about geographic closure and impedes our ability to estimate
an effective sampling area (Royle et al. 2013b).
Two recent advancements in population monitoring

improve our ability to identify individual coyotes and to
account for detection in estimating density and effective
trapping area given large-scale coyote space use. Non-
invasive genetic sampling (NGS) allows for detection of
individuals without the need for physical capture (Waits and
Paetkau 2005). This method has seen prolific recent use,
particularly for monitoring carnivores and other elusive and
wide-ranging species (Lampa et al. 2013). Spatial capture–
recapture (SCR) models allow for the estimation of density
based on the movement of marked individuals around
activity centers over multiple possible encounters (Royle
and Young 2008, Royle et al. 2013b). Thus, SCR allows
for explicit modeling of inherent spatial heterogeneity in
encounter probabilities and can provide unbiased estimates
of density (no. individuals over a unit of area) for an area of
interest.
We combined NGS and SCR methods to estimate local

coyote densities over multiple sessions at 2 sites in western
Virginia, USA. We expected to find differences in local
population dynamics between sites as a result of different
intensities of harvest (permitted year-round) and available
resources. We predicted that mortality and subsequent

recruitment would be greater in areas with higher human
population density and private inholdings that allowed for
greater opportunity for coyote harvest compared to areas
with lower human density. Because annual density was also
expected to be dependent on prey availability (Knowlton
et al. 1999), we predicted density would be greater at sites
with greater habitat diversity and potential anthropogenic
food resources from interspersed human and agricultural
habitats (Rose and Polis 1998, Fedriani et al. 2001). Finally,
we predicted local densities would fluctuate seasonally as
a result of reproduction and dispersal (Knowlton et al.
1999) with greater densities in the summer following birth of
pups and lower densities in the winter following dispersal.

STUDY AREA

We conducted surveys from June 2011 to July 2013 in 2
study areas, 1 in each of 2 counties in Virginia: Bath and
Rockingham counties. Both are located along the eastern
divide in the northern Ridge and Valley province of the
central Appalachians, bordering West Virginia, USA
(Fig. 1). The region, transitioning from the Shenandoah
Valley to the Appalachian Plateau, is characterized by
karst topography with elongated mountain ridges and
narrow valleys. Elevation in Bath County ranges from
350m to 1,365m, and 363m to 1,335m in Rockingham
County. Average monthly temperature can range from
0.78C to 25.18C, with a mean minimum temperature of
�4.68C in January and a mean maximum temperature
of 31.68C in July (National Oceanic and Atmospheric
Administration, public data 2012). Average annual precipi-
tation was 97.79 cm, with most precipitation occurring
between March and September (National Oceanic and
Atmospheric Administration, public data 2012). Both
study areas consisted primarily of mature hardwood forest
habitat with low coyote densities (Tremblay et al. 1998,
Richer et al. 2002, Kays et al. 2008). Forest habitat structure
consists of a canopy including chestnut oak (Quercus
prinus), red oak (Q. rubra), white oak (Q. alba), and tulip
poplar (Liriodendron tulipifera), and an understory including
rhododendron (Rhododendron maximum) and eastern
mountain laurel (Kalmia latifolia). There was a diversity
of potential prey species including white-tailed deer
(Odocoileus virginianus), rabbits (Sylvilagus spp.), squirrels,
(Sciurius spp.), voles (Microtus spp.), and mice (Peromyscus
spp.). However, all animal populations were potentially
limited by low nutritional carrying capacity in the region
(DeCalesta 1997, Diefenbach et al. 1997). In addition,
2 other predators in the region, bobcats (Lynx rufus) and
American black bears (Ursus americanus), likely competed
with coyotes for limited resources.
Outdoor recreation was the primary land use in both study

areas. The Bath County study area is located in the northwest
portion of the county and movement of individuals within
this study area extended into Highland and Allegheny
Counties, Virginia, and Pocahontas and Greenbrier Coun-
ties, West Virginia. The Rockingham study area was located
in the western portion of the county, and estimated home
ranges extended into Pendleton County, West Virginia. The
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Rockingham County study area was located in a large block
of contiguous forest in the George Washington National
Forest, whereas the Bath County study area was placed in
predominantly forest habitat on federal and state public lands
(�57% of Bath County), and was interspersed with veins of
more productive pasture, hayfields, and human development
along linear valley bottoms (Morin 2015). We focused
sampling within a 250-km2 survey area at each site, but
because of the size of coyote home ranges overlapping with
the survey area, the size of each study area was much larger
(estimated state space size varied between �900 km2 and
�1,200 km2; see below).

METHODS

Sample Collection
We collected fecal DNA samples over 5 closed sessions at
each study site, 3 summer sessions (Jul 2011, 2012, and 2013)
and 2 winter sessions (Feb 2012 and Mar 2013), to estimate
rates of change over intervals with expected population
inputs (reproduction in spring) and population outputs
(dispersal and potential for increased mortality during fall
hunting seasons). We established approximately 200 km of
scat transects along dirt roads, hiking trails, and well-defined

game trails on publicly managed lands (predominantly
George Washington National Forest) in each study area:
213 km in Bath County, 208.5 km in Rockingham County.
Scat accumulation rates can be slow for highly mobile, low-
density populations (Lonsinger et al. 2015). Conducting
repeated secondary sampling sessions (temporal replicates)
to estimate detection within sessions can violate closure
assumptions when scat accumulation periods are lengthy,
especially if apparent survival is low. Thus, we chose to
use single-session detections over spatial replicates during
a single month for each sampling session to satisfy the
population closure assumption. We first cleared scat from
all transects and then collected fecal DNA samples and
recorded global positioning system (GPS) locations for all
newly accumulated scats 1 month later.
In addition to the samples collected for the closed sessions

for this study, we collected samples for separate surveys in the
same study areas (concurrent sampling sessions). We used
all closed session and concurrent session scat samples for
genetic analysis to identify individuals, and then used a subset
of data consisting only of the closed session samples to create
encounter histories for closed population models. Sampling
methods were approved by the Virginia Tech Institutional
Animal Care and Use Committee (permit #10-117-FIW)

Figure 1. Locations of roughly 200 km of scat transects in each of 2 study areas (Bath County to the south, and Rockingham County to the north) in western
Virginia. Transects were located on existing dirt roads and trails on public managed lands and surveys repeated over 5 periods from 2011 to 2013 to estimate
density and population demographics for coyotes.
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and permitted by the Virginia Department of Game and
Inland Fisheries (permit #041503).

Identifying Individual Coyotes From Scat Samples
We extracted DNA from feces using Qiagen QIAmp DNA
stool kit (Qiagen,Valencia, CA, USA) in a lab designated for
low-quality, low-quantity DNA and included an extraction
negative in each batch. We screened all samples using a
species identification multiplex that allows co-amplification
and fragment analysis of 2 segments of the mitochondrial
DNA (mtDNA) control region for scoring species-specific
fragment sizes (De Barba et al. 2014). The 2 study sites were
located in the assumed convergence zone of the northern and
southern fronts of eastern coyote range expansion (Parker
1995, Kays et al. 2008), which indicated gray wolf (Canis
lupus) mtDNA haplotypes may occur in the population.
In addition, Adams et al. (2003) reported domestic dog
mtDNA haplotypes in coyotes in the southeastern United
States. Two tissue samples collected from 19 different
individual coyotes captured in the Bath County study area
(Morin 2015) were identified as possible domestic dog or
gray wolf based on amplified fragment sizes from the
mtDNA test. Thus, we attempted to genotype all samples
identified as canid (Canis spp.) and screened for domestic
dogs using a more sensitive nuclear DNA (nDNA) genotype
assignment test as described below. To determine genotypes,
we combined 9 nuclear microsatellite loci and canid specific-
sex identification primers (Seddon 2005) in a multiplex for
polymerase chain reaction (PCR) amplification and analyzed
samples using the Applied Biosystems 3130xl ABI capillary
machine (Applied Biosystems, Foster City, CA, USA) and
associated software as described in Stenglein et al. (2011).
We included a PCR positive (known coyote tissue sample)
and PCR negative control in each PCR plate to identify PCR
failure or potential contamination.
We initially performed PCR for each sample twice to

cull poor quality nDNA samples (i.e., samples with <50%
amplification across the 9 loci not associated with sex
chromosomes). We then repeated PCR 1–3 more times for
each sample to confirm alleles for each locus. We required 2
repetitions to confirm heterozygous loci and 3 repetitions to
confirm homozygous loci to minimize potential genotyping
errors in low quality-low quantity DNA samples from allelic
dropout and polymerase errors (Taberlet et al. 1996). We
used RELIOTYPE (Miller et al. 2002) to confirm >95%
accuracy of genotypes observed in only a single sample.
Finally, we added scat sample genotypes collected for this

study (closed sessions for population monitoring) to scat
sample genotypes identified from concurrent monitoring
efforts from other surveys in both study areas. Although
these other samples were not collected during the established
closed-density monitoring sessions, we combined samples
from all scat collection efforts in the 2 study areas only for
genetic analyses to improve sample sizes for assignment tests
and estimation of summary population genetics statistics
required to estimate probability of identity siblings, PID(sibs)

(Waits et al. 2001). We did not include the additional
samples in models to estimate population demographic

parameters described below. We calculated PID(sibs) in
GenAlEx 6.501 (Peakall and Smouse 2006, 2012) using
an allele frequency data set consisting of individual coyotes
identified with fecal DNA with alleles confirmed at all loci
and tissue samples from 19 captured individuals in the study
area (Morin 2015). We matched genotypes from different
scat samples to the same individual canid using GenAlEx
6.501 and the calculated PID(sibs) to conservatively distin-
guish between genetically similar siblings (PID(sibs)< 0.001
at 7 loci required for a match, PID(sibs)¼ 0.000069 at all
9 codominant loci). We combined all individual canid
genotypes from fecal samples with genotypes from 19 coyotes
captured in the Bath County study area and 28 domestic
dogs and screened the canid genotypes in STRUCTURE
version 2.3.4 (Pritchard et al. 2000) with 9 loci, 2 assumed
populations, 100,000 burn-in and 200,000 iterations. We
removed all genotypes that clustered with known domestic
dog samples and used the remaining confirmed individual
genotypes from the 5 closed-session population monitoring
surveys to construct SCR encounter histories for both study
sites, resulting in 10 SCR data sets to estimate density (i.e., 5
sessions for each of the 2 sites). To estimate survival, we
created a capture history by recording whether an individual
was detected during a session and noted site as a grouping
factor.

Population Parameter Estimates
Apparent survival.—We estimated apparent survival (f)

and detection (p) using the Cormack–Jolly–Seber (CJS)
model in Program MARK (Lebreton et al. 1992, White and
Burnham 1999) implemented through the RMark package
(Laake 2013) in Program R (R Core Team 2015) with
individual encounters for 5 sessions grouped by both sites.
The apparent survival parameter is an estimate of population
outputs including mortality and permanent emigration
from the study area. We constructed a candidate model
set consisting of 25 candidate models testing whether
survival and detection were best estimated by site (Bath
or Rockingham), session (Jul 2011, Feb 2012, Jul 2012,
Mar 2013, and Jul 2013), season (winter or summer), or
combinations of site and session or season (site� session or
site� season). We imported the most parameterized model
[f(site�session) p(site�session)] to MARK and estimated
goodness of fit using parametric bootstrap with 999
simulations and estimated the overdispersion parameter (̂c)
by dividing the observed ĉ by the mean ĉ for the simulations.
We selected the best model using quasi-Akaike’s Informa-
tion Criterion corrected for small sample sizes (QAICc) and
assessed usefulness of estimates of survival based on precision
(Burnham and Anderson 2002).
Density.—We estimated coyote density for each site for

all 5 sessions separately. We used a hierarchical SCR
single occasion model for each closed session at each site. We
used 0.5-km transect segments as spatial replicates and fit
the SCR0 model (Royle et al. 2013b). The model consists of
encounter histories of individuals detected by fecal DNA at
specific transect segment locations (J) over a single sampling
occasion (K¼ 1). The process model assumes that individual
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animals use space around an individual activity center (s), and
that probability of detection at a specific trap decreases with
distance of that trap from activity centers, represented by a
scaling parameter (s). We assumed a bivariate Gaussian
(half-normal) distribution detection function defined by
parameter s. We recognize a monotonically decaying
detection rate from an activity center may not be ideal for
detection of scat for territorial animals. Thus, estimates of s
may be biased by this assumption and 95% home range size
should not be inferred from s. However, our primary interest
was estimating density, and although the size of estimated
home ranges may be biased by violation of this assumption,
the estimate of the number of activity centers in the state
space should not be (Royle et al. 2013b). Additionally,
the bivariate Gaussian detection function has been tested
and density estimates from models employing the bivariate
Gaussian detection function are robust to most assumption
violations (Russell et al. 2012).
We used data augmentation to account for individuals

present but not detected during the study (Royle and Young
2008). For each of the 10 data sets, we set a maximum
number of possible activity centers (M) within an area (S)
for each site- and session-specific state space (Table 1).
We associated an indicator variable (zi, outcome of a
Bernoulli trial) with each possible unobserved activity center
to estimate whether those possible activity centers were
representative of individuals that were present in the area but
that had capture histories consisting of all zeros, or whether
they were structural zeros (not representative of undetected
individuals), with a binomial distribution characterizing
all trials (c). We summed all activity centers (detected
and estimated nonstructural zeros) and derived density by
dividing the sum of activity centers within the state space
by the total area of the state space. The choice of S is not
arbitrary but is a prior of the binomial point process model

and is determined by testing the sensitivity of resulting
parameter estimates to changes in the size of S, and thus may
vary by site and session (Table 1).
We formatted data using the SCR23darray() function in

the analysis package scrbook (Royle et al. 2014) in R (R Core
Team 2015) and implemented each model using the rjags
(Plummer 2014), and coda (Plummer et al. 2006) packages.
We ran each model with 3 Markov chain Monte Carlo
(MCMC) chains with 100 adaptations for the Metropolis-
within-Gibbs algorithm, and then used coda to sample
200,000 iterations from the posterior distributions of each
monitored parameter at a thinning rate of 1 (no thinning),
including a burn-in of 100,000 iterations. We assessed
MCMC convergence by visually inspecting trace plots for
each monitored parameter, and comparing R̂ statistics to 1.1
(Gelman and Rubin 1992). In addition, we used subsets of
30,000 iteration posteriors from different locations within
each 100,000 iteration posteriors and confirmed similar
estimates within reasonable MCMC error. We reported the
posterior means and standard deviations, medians, and 95%
credible intervals for baseline encounter rate (l0), s, and c,
and we reported the posterior mode for density (D) as it is
unbiased compared to the posterior mean in SCR models
(Chandler and Royle 2013).
Recruitment and population growth rate.—We used an ad

hoc robust design approach combining the apparent survival
estimates (population outputs) from the CJS model and the
site- and session-specific density estimates from the SCR
models to derive estimates of net new recruits (population
inputs via reproduction or immigration) to the population (Bi)
and per capita recruitment (fi) over each interval (Pollock 1981,
1982; Williams et al. 2002). We estimated Bi and fi using
a Jolly–Seber estimator (Jolly 1965, Seber 1965,Williams et al.
2002). We estimated approximate variance for Bi following
Pollock et al. (1990) and variance for fi by calculating the

Table 1. Recapture rates, priors, and parameter values used in the spatial capture–recapture (SCR0) model to estimate coyote density for each site and session
in Bath and Rockingham Counties, Virginia, USA, July 2011–July 2013.

Site session
Captures

(total detections)
Individuals recaptured
(range of recaptures)

Max. no. possible
individuals (M)

Area of site- and
session-specific state space (S) s prior

Bath Jul 2011 15 (21) 4 (2–3) 200 997.50 km2 Uniform (0,5)
�5.0-km buffer

Bath Feb 2012 22 (41) 8 (2–10) 250 934.89 km2 Uniform (0,5)
�4.5-km buffer

Bath Jul 2012 14 (21) 5 (2–4) 240 874.29 km2 Uniform (0,3)
�4.0-km buffer

Bath Mar 2013 31 (79) 17 (2–12) 165 874.29 km2 Uniform (0,4)
�4.0-km buffer

Bath Jul 2013 14 (18) 2 (2–4) 280 1,267.92 Uniform (0,8)
�7-km buffer

Rockingham Jul 2011 7 (11) 3 (2–3) 150 995.80 km2 Uniform (0,5)
�4.5-km buffer

Rockingham Feb 2012 19 (33) 8 (2–4) 175 995.80 km2 Uniform (0,4)
�4.5-km buffer

Rockingham Jul 2012 12 (16) 4 (2) 225 1,194.67 km2 Uniform (0,6)
�6.0-km buffer

Rockingham Mar 2013 25 (51) 14 (5) 175 995.80 km2 Uniform (0,4)
�4.5 km buffer

Rockingham Jul 2013 17 (52) 11 (2–13) 175 1,060.09 km2 Uniform (0,4)
�5.0-km buffer
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variance of a ratio of random variables (Mood et al. 1974).We
derived population growth as the ratio of posterior mode

density estimates from the SCR model bli ¼ bD iþ1bD i

� �
between

each session. We estimated variance for bli by calculating the
variance of a ratio of random variables (Mood et al. 1974).

RESULTS

We collected 5,048 fecal samples across the 5 closed sessions
and all concurrent scat collection monitoring efforts and
identified 1,003 (19.87%) as canid using mtDNA species
identification. We successfully amplified nDNA micro-
satellites and confirmed genotypes at 7 loci for 579 of 1,003
samples (57.7%). The average of allelic dropout/sample
genotype was 0.75 (range: 0–8), the average number of false
alleles/sample genotype 0.06 (range: 0–4), and the average
PCR replicates/sample was 4.39 (range: 2–6). Our final
dataset contained no individuals mismatched at only 1 locus
and no individuals mismatched at 2 out of 9 loci. After
removing genotypes identified as domestic dog (39 samples,
32 individuals) we identified 146 individual coyote genotypes
across the 2 study sites. For the closed session population
monitoring, we genotyped 347 scat samples and confirmed
107 individual coyotes over 5 sessions at the 2 study sites.

Population Parameter Estimates
Apparent survival.—Bootstrap goodness of fit indicated

evidence of lack of fit (P< 0.001) so we used ĉ ¼ 2.20
(observed deviance of most parameterized model/�x simula-
tion deviance) to estimate a quasi-likelihood adjustment

(QAICc) for model selection. There were several competing
models that all included site-specific survival and nested
parameterizations of detection including site and season
(Table 2). These models suggested detection was higher in
the summer than the winter at the Bath County site but
lower in the summer compared to winter at the Rockingham
County site, so we did not attempt to constrain detection
with a post hoc additive model (Appendix A). Because the
top 3 models were all nested and had approximately
equivalent model weights (Table 2), we chose to use the
f(site) p(site�season) model for further population param-
eter estimates (Table 3). This model produced practical
estimates of apparent survival and was not be affected by
constraints on detection. Model selection indicated survival
at the 2 sites was different (the top 4 models included site as a
covariate on apparent survival and their combined relative
QAICc weight (wi)¼ 0.68). The Bath County site 6-month
apparent survival estimate was 0.442 (95% CI¼ 0.259–
0.643) across seasons and the Rockingham County site
apparent survival estimate was 0.863 (95% CI¼ 0.269–
0.991).
Density.—Density estimates were low at both sites, (Fig. 2,

Table 3, Appendix B). At the Rockingham County study
area, density was generally less precise during the winter
sessions (Feb 2012 posterior mode¼ 7.53/100 km2, 95%
credible interval¼ 4.52–14.46; Mar 2013 posterior mode¼
8.53/100 km2, 95% credible interval¼ 6.43–15.16) than
during the summer sessions (Jul 2011¼ 2.41/100 km2,
95% credible interval¼ 1.21–10.54; Jul 2012¼ 4.68/100km2,
95% credible interval¼ 2.51–16.07; Jul 2013¼ 3.77/100km2,

Table 2. Cormack–Jolly–Seber (CJS) model selection for apparent survival (f) and detection (p) over 5 scat sampling sessions (July 2011–July 2013) for
coyotes in Bath and Rockingham Counties, Virginia, USA (sites). The time models allow parameters for each session or interval to be estimated and season
constrains survival or detection to be the same for each season (winter or summer). We compared models using Akaike’s Information Criterion with a quasi-
likelihood adjustment (QAICc), differences in QAICc compared to the top model (DQAICc), model weight based on QAICc (wi), and quasi-likelihood
adjusted deviance (QDeviance).

Model K QAICc DQAICc wi QDeviance

f(�site)p(�season) 4 126.84 0.00 0.19 26.73
f(�site)p(�site) 4 127.15 0.31 0.16 27.04
f(�site)p(�site�season) 6 127.41 0.57 0.14 22.96
f(�site�season)p(�site�season) 7 127.93 1.09 0.11 21.26
f(�season)p(�site) 4 128.78 1.94 0.07 28.67
f(�season)p(�season) 4 128.92 2.08 0.07 28.81
f(�season)p(�site�season) 6 129.49 2.65 0.05 25.04
f(�site)p(�time) 6 130.17 3.33 0.04 25.72
f(�time)p(�season) 6 130.26 3.42 0.03 25.81
f(�time)p(�site) 6 130.66 3.82 0.03 26.21
f(�site�season)p(�site) 6 130.93 4.09 0.02 26.48
f(�time)p(�site�season) 8 131.02 4.18 0.02 22.10
f(�site�season)p(�season) 6 131.11 4.27 0.02 26.66
f(�season)p(�time) 6 132.10 5.26 0.01 27.65
f(�time)p(�time) 7 132.13 5.29 0.01 25.46
f(�site�season)p(�time) 8 134.38 7.54 0.00 25.45
f(�site)p(�site�time) 10 135.27 8.43 0.00 21.73
f(�site�time)p(�time) 10 136.32 9.48 0.00 22.78
f(�site�time)p(�site) 10 137.13 10.29 0.00 23.59
f(�season)p(�site�time) 10 137.27 10.43 0.00 23.73
f(�site�time)p(�season) 10 137.28 10.44 0.00 23.74
f(�site�time)p(�site�season) 12 138.23 11.39 0.00 19.92
f(�site�season)p(�site�time) 12 138.37 11.53 0.00 20.07
f(�time)p(�site�time) 12 139.88 13.04 0.00 21.58
f(�site�time)p(�site�time) 13 140.55 13.71 0.00 19.81
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95% credible interval¼ 2.74–6.51). The Bath County study
area reflected more consistent density estimates than Rock-
ingham across all sessions regardless of season (median density
for Bath County study area¼ 8.02/100 km2; min. density Jul
2013¼ 5.53/100 km2, 95% credible interval¼ 2.76–19.72;
max. density Mar 2013¼ 9.04, 95% credible interval¼ 7.32–
14.18). The estimate for the final session in Bath County was
much less precise because of the small sample size and very small
number of recaptures (Table 1). This may have been a result of
excessive rainfall during the accumulation period following
initial clearing for the session in Bath County, which likely
removed scats and decreased DNA amplification success rates
for remaining scats (Lonsinger et al. 2016). Clearing for the
Rockingham transects followed clearing for Bath County and
occurred during the persistent heavy rains and individuals
detected and recapture ratesweremuchhigher.Thus,wedonot
have as much confidence in the final density estimate for Bath
County (Jul 2013).
Recruitment and population growth rate.—Over 6-month

intervals, point estimates of Bi and fi in Bath County ranged
from 1.53 to 5.56 new recruits/100 km2 and from 0.17 to
0.71 recruits/capita, respectively (Fig. 2, Table 3). However,
precision in estimates was variable and poor and we were
unable to determine if recruitment was consistently positive
given the uncertainty in estimates. At the Rockingham
County study area, Bi appeared to alternate between seasons
with greater numbers of recruits between the summer and
winter sessions and no recruits (negative estimates of
recruits) between winter and summer sessions (point
estimate range¼�3.59 to 5.45), and point estimates of fi
demonstrated the same fluctuating seasonal pattern (point
estimate range¼�0.42 to 2.26). However, precision in
estimates was again too poor to determine differences with
certainty. Population growth rate (bli) was variable, exhibited

a large amount of uncertainty, and overlapped 1.0 across
seasons for both study areas (Table 3).

DISCUSSION

Estimating density and demographic rates of change is
critical to wildlife management. The use of NGS and SCR to
estimate local coyote population parameters is an improve-
ment compared to traditional monitoring methods because it
is unaffected by capture and geographic closure constraints
that can be problematic with wide-ranging carnivores (Royle
et al. 2008). We found combining single-season scat surveys
with NGS and a spatial replicate SCRmodel was a successful
approach for estimating coyote density in our study area.
However, precision in estimates was relatively poor. As a
result, direct comparisons between sites and seasons included
a large amount of overlap in error estimates and inconclusive
results. In addition, poor precision also hindered our ability
to evaluate hypotheses about demographic rates of change
between seasons. Thus, although we were able to combine
SCR density estimates with CJS apparent survival estimates
to derive local recruitment and population growth estimates,
we were unable to detect meaningful differences over space
and time because of the amount of uncertainty in the
estimates.
Although we were not entirely successful in estimating all

population parameters of interest with precision, there is
room for improvement based on the lessons learned here.
The use of a site-specific pilot study could have allowed for
better determination of an appropriate accumulation period
(Lonsinger et al. 2015, Woodruff et al. 2015). Recapture
rates were highest for both sites during winter 2013. This
session was completed prior to denning but was slightly later
than intended because of periods of high snowfall that
prohibited detection of scats for both the clearing and the

Table 3. Population parameter estimates for coyotes in Bath and Rockingham Counties, Virginia, USA for 6-month seasonal intervals and for each session
from July 2011 to July 2013.

Site Session Apparent survival (f)a
Density

(D, per 100 km2)b Births (Bi)
c

Recruitment
(fi)

d
Population

growth rate (l)e

Bath Jul 2011 0.442 (0.103, 0.259–0.643) 8.02 (4.21–17.74) 5.12 (3.31) 0.64 (0.50) 1.08 (0.58)
Feb 2012 8.66 (4.92–15.83) 4.05 (4.87) 0.47 (0.58) 0.91 (0.63)
Jul 2012 7.88 (4.69–23.33) 5.56 (2.01) 0.71 (0.50) 1.15 (0.73)
Mar 2013 9.04 (7.32–14.18) 1.53 (0.95) 0.17 (0.11) 0.61 (0.12)
Jul 2013 5.53 (2.76–19.72)

Rockingham Jul 2011 0.863 (0.172, 0.269–0.991) 2.41 (1.21–10.54 5.45 (3.27) 2.26 (2.57) 3.12 (3.20)
Feb 2012 7.53 (4.52–14.50) �1.82 (3.70) �0.24 (0.50) 0.62 (0.50)
Jul 2012 4.68 (2.51–16.07) 4.45 (2.45) 0.96 (0.88) 1.82 (1.42)
Mar 2013 8.53 (6.4 �15.16) �3.59 (1.80) �0.42 (0.24) 0.44 (0.16)
Jul 2013 3.77 (2.74–6.51)

a Maximum likelihood point estimate (SE, 95% CI) from Cormack–Jolly–Seber model, estimated constant across all sessions.
b Posterior mode from 1 chain (95% credible interval).
c New entrants in the population between i and iþ 1 where bBi ¼ bN iþ1 � bf i

bN i
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collection sessions. Thus, the accumulation period was 1–2
weeks longer for this session and that likely contributed to
larger sample sizes, better recapture rates, and more precise
estimates. For our study area, it may be preferable to increase
the length of the closed session sampling period to 6 weeks
to improve estimates. In addition, we found initially clearing
transects to be a critical step because test samples collected
during clearing sessions detected 2 individuals known to be
killed 1–4 months before the session. Thus, it is important
to consider closure and accumulation rates to provide an
adequate sample for density estimates (Lonsinger et al.
2015).
There are several other considerations that could improve

estimates from the SCR models. First, coyote space use
and home range were variable, and often determined by class
structure (Hinton et al. 2015, Morin 2015). Including
habitat covariates or estimating landscape resistance could
result in some improvement to model estimates (Royle
et al. 2013a, Sutherland et al. 2015). However, biases or
uncertainty due to differences in habitat, especially in our

study area, were likely less important than the challenges
associated with class structure. Although there was no
evidence for differences in home range size by sex in a
concurrent space use study in Bath County, there was support
for differences in home range size between adults and
subadults, and especially between residents and transients
(Morin 2015). Although density estimates are robust to the
presence of transience, estimates of the spatial scalar (s) could
be dramatically improved if allowed to differ for residents
and transients, which could provide a substantial increase
in precision (Royle et al. 2015). In addition, incorporating
resource selection functions could also improve accuracy and
precision (Royle et al. 2013c).
Estimates of smay also be affected by the chosen detection

function (Gaussian bivariate half-normal). The initial
Gaussian bivariate SCR model was developed to estimate
carnivore densities from camera-trap photographs, which are
direct observations of the animals, so the assumption that
detection is highest at an individual’s activity center is often
reasonable. However, detection based on collection of fecal

Figure 2. Coyote per capita recruitment (fi), new recruits into the population (Bi), and density (D¼ coyotes/100 km2) estimates for the 2 sites, Bath County
(BA) and Rockingham County (RO) for the 5 scat sampling sessions (D) and the 4 intervals between sampling sessions (Fi and Bi). Error bars forD represent
the 95% credible intervals for estimates and error bars for Fi and Bi represent standard errors.
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DNA from transects may result in behavioral biases if
detection is uniform throughout a home range or greater
towards the outer portions of the home range for territorial
animals such as coyotes (Allen et al. 1999, Gese 2001). There
may also be a sampling bias because detections can only occur
along transects. Validation of detection functions for this
sampling method could dramatically improve identifiability,
accuracy, and precision for estimates of all parameters within
the model. Finally, recent developments for SCR CJS
(Gardner et al. 2010) would likely allow for more useful
session-specific estimates for apparent survival compared to
the maximum likelihood estimates we used here. This would
be true for low-density populations and would improve
derived estimates and our ability to identify trends over time
and across sites.
Although precision in parameter estimates was not

sufficient for strong inference of demographic processes,
there were some patterns in the point estimates that warrant
further investigation. Interestingly, density point estimates
at the Rockingham site were more than twice as high for
the winter sessions than the summer, opposite of our initial
predictions that density would increase in the summer
with reproductive inputs. It is possible this difference is
a reflection of the detection sensitivity of our sampling
method. Previous studies reported whelping to occur in late
March to late May and dens abandoned after 2–3 months of
age, with increasing pup independence at 4 months of age
(Harrison 1992, Parker 1995). In our study area, births
seemed to occur in mid-late April, which would mean pups
may not have been moving around independently until
August, after our summer sampling sessions. Because we
were sampling transects and not rendezvous sites (Stenglein
et al. 2011), it is possible we were not detecting the
reproductive input in the summer but were instead detecting
new individuals in the winter session, resulting in increased
densities. In addition, the higher density in winter possibly
was a result of increased transients or individuals attempting
to immigrate into the Rockingham study area and that
fewer residents defending territories comprised the summer
population.
The possible differences in point estimate trends between

the 2 study areas should also be explored in future studies.
Although the sites were only approximately 100 km apart,
there were tentative indications of demographic spatial
structure within the region. This finding was surprising
because the habitat was similar across our study areas and
the only discernible differences were private inholdings
and increased year-round interaction with humans in Bath
County. The Bath County study area density point estimates
were generally higher than the Rockingham County study
area as predicted, despite very low 6-month apparent survival
across seasons in Bath County. Conversely, although point
estimates suggest density may have been lower at the
Rockingham study area, population parameter estimates
appeared to fluctuate seasonally as would be expected for a
saturated local population with few new available territories
for recruits (Knowlton et al. 1999). Thus, our findings may
indicate the presence of a density-dependent compensatory

feedback mechanism (Murdoch 1994, Turchin 1999, Hixon
et al. 2002), similar to recent studies investigating the
ineffectiveness of culling efforts for red foxes (Vulpes vulpes)
in agricultural areas in England (Baker and Harris 2006) and
France (Lieury et al. 2015), and black-backed jackals (Canis
mesomelas) in South Africa (Minnie et al. 2015).
Coyote survival in western states and urbanized areas has

been relatively high compared to survival rates of eastern
coyotes (Bogan 2004, Gehrt 2007, Grubbs and Krausman
2009), yet densities varied with resource availability, not
mortality rates. Mortality in eastern coyote populations was
primarily human-caused, including trapping, shooting, other
forms of lethal removal, road mortality, and incidental
poisoning (Harrison 1986, Crête et al. 2001, Houben 2004,
Van Deelen and Gosselink 2006, Schrecengost et al. 2009).
Even in an eastern population where annual survival was
unusually high (0.80–0.98), the prevalent cause of mortality
was harvest (Chamberlain and Leopold 2001). However,
despite continued coyote harvest and removals, populations
continued to expand in the eastern United States and local
densities in areas with coyote bounties and intensive lethal
removal efforts have not appeared to decrease (Kays et al.
2008, Kilgo et al. 2014, Conner and Morris 2015). In
addition, past studies suggest local coyote populations were
regulated by competition with other coyotes for territories
and resources, and not harvest or mortality (Knowlton et al.
1999, Conner and Morris 2015). Although density depen-
dence has been difficult to identify in single studies of
coyote populations, the uncertain emerging pattern in our
study, and trends in survival, recruitment, and density from
previous studies, suggest density dependence should be
considered when planning future management objectives for
coyote populations. Further investigation into local coyote
population dynamics including local and regional differences
is required to elucidate the true nature of population
regulation for this adaptable predator.

MANAGEMENT IMPLICATIONS

As coyote populations have expanded across eastern North
America, effective population management strategies have
been elusive. The NGS SCR approach provides a non-
invasive method to monitor local coyote population
dynamics using easily implemented single session scat
surveys. This method estimates each session at each site
separately and results may be comparable across separate
monitoring efforts (regions and over time). Although results
from our study were inconclusive because of large variances
for estimates, the estimated density at both study areas was
very low. Low density resulted in small numbers of
individuals captured using NGS methods and lower
precision in density estimates and in estimates of apparent
survival, and therefore, all derived parameters. However, we
expect this method would be very effective in areas with
greater densities, which is useful because high-density
populations may be more likely to create human–coyote
conflict. In addition, when the objective is to estimate low-
density populations, increasing the size of the study area, and
therefore the number of individuals available to be sampled,
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would improve precision. Although we were not able to
detect differences in population growth rates and recruitment
between seasons in our study, estimating inputs and outputs
over a longer period of time could yield population trend
information, particularly if differences between one time
period and the next are great. Thus, to produce useful results,
monitoring objectives should be well defined prior to
implementation, specific hypotheses should be outlined,
and sampling designed to achieve those objectives. Spatial
and temporal scale of the processes of interest need to be
considered. Finally, we recommend local pilot studies to
estimate general population densities and identify appropri-
ate study area size to provide sufficient power to detect
differences in the population parameters of interest across
space and time.
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APPENDIX A

Real parameter estimates from selected Cormack–Jolly–Seber (CJS) model of apparent survival (f) and detection (p) for
coyotes in Bath and Rockingham Counties, Virginia, USA, 2011–2013.

APPENDIX B

Spatial capture–recapture (SCR) model parameter estimates, standard errors, and credible intervals for coyotes in the Bath and
Rockingham County study areas of Virginia, USA, 2011–2013.

Model Parameter Estimate SE Lower 95% CI Upper 95% CI

f(site) p(site� season) f(Bath) 0.442 0.103 0.259 0.643
f(Rockingham) 0.863 0.172 0.269 0.991
p(Bath, summer) 0.711 0.140 0.393 0.903
p(Bath, winter) 0.342 0.090 0.192 0.531
p(Rockingham, summer) 0.294 0.095 0.145 0.505
p(Rockingham, winter) 0.415 0.112 0.223 0.636

Site and session Parameter �x SE Mode Quantile 0.025 Quantile 0.50 Quantile 0.975

Bath Jul 2011 sa 1.544 0.455 0.946 1.450 2.694
l0

b 0.050 0.030 0.012 0.043 0.125
cc 0.465 0.174 0.204 0.436 0.883
Dd 3.45 8.02 4.21 8.72 17.74

Bath Feb 2012 s 1.974 0.398 1.375 1.912 2.926
l0 0.045 0.018 0.019 0.043 0.088
c 0.338 0.108 0.178 0.322 0.596
D 2.80 8.66 4.92 8.56 15.83

Bath Jul 2012 s 1.301 0.376 0.785 1.227 2.271
l0 0.051 0.029 0.014 0.045 0.123
c 0.414 0.175 0.165 0.379 0.851
D 4.78 7.88 4.69 10.29 23.33

Bath Mar 2013 s 1.543 0.150 1.284 1.531 1.871
l0 0.109 0.024 0.069 0.107 0.160
c 0.545 0.100 0.369 0.539 0.760
D 1.77 9.04 7.32 10.18 14.18

Bath Jul 2013 s 3.615 1.313 1.868 3.306 7.010
l0 0.009 0.007 0.002 0.008 0.026
c 0.394 0.202 0.121 0.349 0.892
D 5.53 2.76 7.65 19.72

Rockingham Jul 2011 s 2.516 0.834 1.376 2.327 4.564
l0 0.030 0.024 0.005 0.024 0.093
c 0.255 0.156 0.075 0.214 0.705
D 2.3 2.41 1.72 3.20 5.57

Rockingham Feb 2012 s 2.081 0.418 1.450 2.016 3.089
l0 0.040 0.018 0.015 0.037 0.083
c 0.468 0.146 0.243 0.447 0.824
D 2.5 7.53 4.52 7.83 14.5

Rockingham Jul 2012 s 2.408 0.806 1.326 2.238 4.503
l0 0.026 0.019 0.005 0.021 0.075
c 0.373 0.183 0.130 0.330 0.853
D 3.44 4.68 2.51 6.19 16.07

Rockingham Mar 2013 s 1.629 0.228 1.260 1.602 2.152
l0 0.071 0.021 0.037 0.069 0.120
c 0.576 0.131 0.354 0.563 0.867
D 2.23 8.53 6.43 9.84 15.16

Rockingham Jul 2013 s 2.208 0.289 1.738 2.176 2.871
l0 0.093 0.026 0.051 0.090 0.151
c 0.266 0.067 0.153 0.260 0.413
D 0.97 3.77 2.74 4.25 6.51

a Scaling parameter for Gaussian bivariate detection model.
b Encounter rate at hypothetical activity center.
c Data augmentation parameter.
d Density (coyotes/100 km2).
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