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Abstract. Recently introduced unmarked spatial capture–recapture (SCR), spatial mark–resight (SMR),
and 2-flank spatial partial identity models (SPIMs) extend the domain of SCR to populations or observa-
tion systems that do not always allow for individual identity to be determined with certainty. For example,
some species do not have natural marks that can reliably produce individual identities from photographs,
and some methods of observation produce partial identity samples as is the case with remote cameras that
sometimes produce single-flank photographs. Unmarked SCR, SMR, and SPIM share the feature that they
probabilistically resolve the uncertainty in individual identity using the spatial location where samples
were collected. Spatial location is informative of individual identity in spatially structured populations
because a sample is more likely to have been produced by an individual living near the trap where it was
recorded than an individual living further away from the trap. Further, the level of information about indi-
vidual identity that a spatial location contains is related to two key ecological concepts, population density
and home range size, which we quantify using a proposed Identity Diversity Index (IDI). We show that
latent and partial identity SCR models produce imprecise and biased density estimates in many high IDI
scenarios when data are sparse. We then extend the unmarked SCR model to incorporate categorical, par-
tially identifying covariates, which reduce the level of uncertainty in individual identity, increasing the reli-
ability and precision of density estimates, and allowing reliable density estimation in scenarios with higher
IDI values and with more sparse data. We illustrate the performance of this “categorical SPIM” via simula-
tions and by applying it to a black bear data set using microsatellite loci as categorical covariates, where
we reproduce the full data set estimates with only slightly less precision using fewer loci than necessary
for confident individual identification. We then discuss how the categorical SPIM can be applied to other
wildlife sampling scenarios such as remote camera surveys, where natural or researcher-applied partial
marks can be observed in photographs. Finally, we discuss how the categorical SPIM can be added to
SMR, 2-flank SPIM, or other latent identity SCR models.
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INTRODUCTION

Animal population density is a fundamental
quantity in wildlife ecology, and therefore, esti-
mating population density is a primary challenge
for ecologists (Laake et al. 1993, Efford 2004).
Mark–recapture and spatial capture–recapture
(SCR) methods are among the most reliable
methods for estimating population abundance
and density; however, they generally require that
individual identities of captured animals are
determined with certainty (e.g., marks are
recorded correctly and not lost; Otis et al. 1978).
Recently, several classes of SCR models that uti-
lize latent or partially latent individual identities
have been introduced, extending the utility of
SCR models to populations that are unmarked
(unmarked SCR, alternatively known as a spatial
counts model; Chandler and Royle 2013), popu-
lations for which only a subset of individuals are
marked (spatial mark–resight [SMR]; Sollmann
et al. 2013), populations for which individuals
are identified only in a subset of the years in a
multiyear study (spatially explicit Integrated
Population Models; Chandler and Clark 2014),
and populations for which some or all samples
carry only partial identifications (spatial partial
identity models [SPIMs]; Augustine et al. 2018).
Similar to recently developed classical partial
identity models (Bonner and Holmberg 2013,
McClintock et al. 2013), this class of SCR models
with latent individual identities shares the fea-
ture that the true capture histories for some or all
observed individuals are latent and must be
probabilistically reconstructed using Markov
Chain Monte Carlo (MCMC; or possibly
marginalized out of the likelihood if computa-
tionally feasible). Unlike the classical partial
identity models, however, these SCR models
with latent individual identities use the spatial
locations where samples were collected, together
with a spatially explicit model of sample deposi-
tion, to probabilistically associate latent or partial
identity samples, thereby reducing uncertainty in
individual identity. This reduced uncertainty in
individual identity is then propagated to a
reduced uncertainty in other model parameter
estimates, including population size and density.
Therefore, the spatial location where a sample
was collected constitutes a continuous partial iden-
tity and unmarked SCR and SMR can be

considered special cases of a SPIM, along with
the “2-flank” SPIM that probabilistically associ-
ates left-flank and right-flank photographs for
species with bilateral identification (Augustine
et al. 2018).
The key feature of a SPIM is that the magni-

tude of uncertainty in individual identity and the
model used to resolve it stems directly from two
key aspects of population ecology–population
density and home range size. In a SPIM, there
will be more uncertainty about sample identity
when more individuals are exposed to capture at
the same traps, which happens when animals
occur at higher densities, and when their home
ranges are larger. Within the context of an SCR
model, this is equivalent to scenarios in which
there are higher densities of individual activity
centers within the state space and larger detec-
tion function spatial scale parameters, for exam-
ple, r for the common half-normal detection
function model. Note, however, that the key fea-
ture that both population density and home
range size determine, which is directly responsi-
ble for the magnitude of uncertainty in individ-
ual identity, is the magnitude of home range overlap,
or more conceptually, the magnitude of overlap
in individual utilization distributions (e.g., as
quantified by Fieberg and Kochanny 2005),
which increases independently by increasing
either population density or home range size.
We propose a metric to quantify the degree of

home range overlap for a given population den-
sity and r, and thus, the expected magnitude of
uncertainty in individual identity. The Simpson’s
Diversity Index can be applied to the spatially
explicit, individual detection probabilities and
averaged over many points on the landscape and
realizations of the SCR process model (configura-
tions of activity centers) to produce an Identity
Diversity Index (IDI), which is conceptually simi-
lar to a metric of utilization distribution overlap
for all individuals in the population. The IDI
quantifies the expected diversity in individual
identity of collected samples in one location,
averaged over the landscape, described in detail
in Appendix S1. Fig. 1 provides a visualization
of how the magnitude of uncertainty in individ-
ual identity conceptually scales with population
density and home range size as quantified by the
SCR r parameter. This relationship between the
magnitude of uncertainty in individual identity
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and the spatial features of animal populations is
what set a SPIM apart from the classical partial
identity models (Bonner and Holmberg 2013,
McClintock et al. 2013, Knapp et al. 2009), where
the magnitude of uncertainty in individual iden-
tity scales with population abundance alone.

Another key feature of the currently available
SPIMs is that partial identity information can
reduce the uncertainty in individual identity
through three mechanisms: (1) by adding deter-
ministic identity associations, (2) by adding
deterministic identity exclusions, and (3) by
improving probabilistic identity associations. To
our knowledge, the mechanics of these models
have not previously been framed in this manner,
which we believe is important for understanding
how they use partial identity information to
improve density estimation, and for extending
the types of partial identity information used by
future SPIMs. Here, we define a deterministic
identity association as a connection between
samples from the same individual that also
implies that the samples are excluded from being
connected with samples from other individuals.
This is distinguished from a deterministic

identity exclusion, which can only prevent cer-
tain samples from being combined together. A
probabilistic identity association occurs when
two samples have a positive posterior probability
of belonging to the same individual, and as this
probability increases, the probability they belong
to another individual necessarily decreases.
Probabilistic identity associations can be
improved with partial identity information,
effectively converging to deterministic identity
associations as partial identity information
increases, as we later demonstrate using
microsatellite loci.
All SPIMs use the spatial location where sam-

ples were collected to improve probabilistic iden-
tity associations. The unmarked SCR model
(Chandler and Royle 2013) and the model of
Chandler and Clark (2014) that relates occupancy
data to a latent SCR model use spatial informa-
tion alone to inform individual identity. Typical
SCR, on the other hand, uses all possible deter-
ministic identity associations. Spatial mark–re-
sight (Sollmann et al. 2013) and the “2-flank”
SPIM (Augustine et al. 2018) represent two inter-
mediate cases that both utilize some determinis-
tic identity associations and exclusions. Spatial
mark–resight makes deterministic identity asso-
ciations between the samples of marked and
identifiable individuals, which simultaneously
excludes them from being connected to samples
from other individuals. Deterministic identity
exclusions are then made between the samples of
unidentifiable individuals whose mark status
can be observed (e.g., an unmarked sample can-
not belong to a marked individual; Royle et al.
2013). The 2-flank SPIM makes deterministic
identity associations across the same flank of the
same individual, enforcing exclusions with non-
matching samples from the same flank. Finally,
deterministic identity exclusions arise in the 2-
flank SPIM from the fact that an individual can
only have one left and right flank.
Augustine et al. (2018) demonstrated that fur-

ther deterministic identity exclusions are possible
in SPIMs by using individual sex to split a data
set into two population subgroups whose identi-
ties could not logically match, reducing the
uncertainty in individual identity and thus abun-
dance and density estimates. Splitting the popu-
lation into identity subgroups of increasingly
smaller size is conceptually similar to applying

Fig. 1. The Identity Diversity Index, quantifying the
magnitude of uncertainty in individual identity, as a
function of population density (D) and the spatial cap-
ture–recapture spatial scale parameter (r). Increasing
D and/or r increases the magnitude of uncertainty in
individual identity and with N fixed, the expected pre-
cision of N and D estimates.
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unmarked SCR to separate populations, each
with increasingly lower population densities,
moving the population under study to more
favorable regions of the IDI along the density
axis (Fig. 1). However, rather than splitting data
sets into increasingly smaller subsets, it is desir-
able to have a model that incorporates these cate-
gorical identity exclusions, allows for imperfect
observation of the category levels, and allows
parameters to be shared across identity sub-
groups. Further, when all categories are com-
bined into a single analysis, the distribution of
individuals across the category levels provides
further information that can improve probabilis-
tic identity associations. For example, if a popu-
lation is 75% female, it is more likely that two
nearby male samples came from a single individ-
ual than if the population is 75% male. Finally,
the proportion of the population in each identity
subgroup may be of ecological interest, such as
individual sex or age class. Therefore, we are
introducing a new class of SCR model, the “cate-
gorical SPIM”, which uses partially identifying
categorical covariates to add both deterministic
identity exclusions and reduce the uncertainty in
probabilistic identity associations.

Partially identifying categorical covariates exist
in many types of invasive and noninvasive wild-
life sampling; for example, in studies using
remote cameras, features such as sex, age class,
and color morph may be observable in at least
some photographs and similar categorical fea-
tures can be extracted from bioacoustic sensors
for some species (Reby et al. 1999, McIntosh
et al. 2015). In more invasive wildlife sampling
involving live capture, many more features are
measurable and researchers may apply categori-
cal marks whose combination do not provide full
identities (e.g., colored collars or ear tags), or cat-
egorical marks may be fully identifying (Lewis
et al. 2015), but imperfectly observed, or fully
identifying categorical marks may be partially
lost over time, similar to the problem of complete
tag loss typically resolved by double tagging
(Cowen and Schwarz 2006). Perhaps the most
informative source of categorical identity covari-
ates in wildlife sampling, however, comes from
microsatellite genotypes.

Microsatellite loci are not typically thought of
as categorical identity covariates because studies
have traditionally aimed to ensure that unique

multilocus genotypes correspond to unique indi-
viduals with high probability through the use of
many highly variable loci. This determination is
typically made using P(ID) and/or P(sib) criteria,
both of which estimate the probability that any
two randomly selected individuals (or full sib-
lings) in a population would share the same mul-
tilocus genotype, given the observed allele
diversities and frequencies (Waits et al. 2001).
The possibility that multiple individuals have the
same multilocus genotype in a capture–recapture
data set has been referred to as the “shadow
effect” (Mills et al. 2000) and is considered a type
of low-frequency error in assigning individual
identities that introduces minimal bias into
parameter estimates in capture–recapture studies
if P(ID) or P(sib) criteria are strictly enforced.
Using the categorical SPIM to model genotype
data is especially appealing when genotypes are
not variable enough to be considered unique
because it does not make deterministic connec-
tions between samples with matching genotypes;
thus, in the categorical SPIM we propose, multi-
ple individuals in the population may have the
same genotype, shifting the “shadow effect”
from a source of bias to an additional source of
uncertainty. Further, microsatellite data are ideal
for investigating the performance of the categori-
cal SPIM across the full range of uncertainty in
individual identity—from unmarked SCR to
SCR—due to the near perfect individual informa-
tion content in the full genotype. Therefore, we
will use genotypes as the main application to
demonstrate how categorical identity and spatial
information combine to determine the magni-
tude of uncertainty in individual identity and the
resulting density estimates, but other types of
categorical covariates could be interchanged
without loss of generality.
Here, we generalize the unmarked SCR model

to develop the “categorical SPIM.” We show via
simulation that in scenarios with more sparse
data than previously considered and/or scenarios
with larger rs and higher densities, the unmarked
SCR density estimator is biased, very imprecise,
and the parameters are frequently not identifiable,
demonstrating the importance of population den-
sity and home range size to the application of
latent and partial identity SCR models. We then
show that adding categorical identity covariates
removes this bias and removes parameter non-
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identifiability, increases precision, allowing for
reliable density estimation across a wider range of
values of density and r for a given capture pro-
cess scenario. We also demonstrate that the uncer-
tainty in the posterior for ncap, the latent number
of individuals captured during a survey, corre-
lates well with the uncertainty in the posterior of
N, suggesting it is a good single metric to quantify
the observed magnitude of uncertainty in individ-
ual identity for a given data set. Finally, we apply
the categorical SPIM to a previously published
black bear data set in which we demonstrate how
well the proposed model can reproduce the origi-
nal density estimate using fewer loci than origi-
nally genotyped. Using this data set, we
demonstrate that all uncertainty in individual
identity can be removed with enough categorical
identity covariates, producing equivalent esti-
mates to an SCR model where all identities are
known with certainty.

METHODS—DATA AND MODEL DESCRIPTION

Methods—unmarked SCR Foundation
First, we introduce the version of the unmarked

SCR model that we will expand to allow categori-
cal identity covariates. The unmarked SCR model
is a typical hierarchical SCR model except that
information about individual identity is not
retained during the observation process. Formal
inference is achieved by relating the spatial pat-
tern of observed counts or detections at each of
the J traps to the latent structure of the SCR pro-
cess model. For the process model, we assume the
N individuals in the population have activity cen-
ters that are distributed uniformly across a two-
dimensional state space S of arbitrary size (A)
and shape, that is, si �UniformðSÞ, i = 1, . . ., N
(see Borchers and Efford 2008, Reich and Gardner
2014, Royle et al. 2016 for alternative specifica-
tions). The activity centers are organized in the
N 9 2 matrix S.

For the observation model, we introduce the
N 9 J fully latent capture history Ytrue, recording
the number of detections or counts for each indi-
vidual at each trap summed across the K occa-
sions. The locations of the J traps are stored in
the J 9 2 matrix X. We assume that the number
of counts or detections for each individual at
each trap is a decreasing function of distance
between the activity centers and traps. If using a

count model, we assume the latent counts are
Poisson: ytrueij �PoisðKkðsi; xjÞÞ, where kðsi; xjÞ ¼
k0 exp � jjsi�xjjj2

2r2

� �
, xj is the location of trap j, k0 is

the expected number of counts for a trap located
at distance 0 from an activity center, and r is the
spatial scale parameter determining how quickly
the expected counts decline with distance from
the activity center. We also consider an alterna-
tive Bernoulli observation model for which
ytrueij �Binðpðsi; xjÞ;KÞ, where p(si, xj) = 1 - exp
( - k(si, xj)).
During the observation process, the true, latent

capture history, Ytrue, is disaggregated into the
observed capture history, Yobs, discarding infor-
mation about individual identity by storing one
observation per row in Yobs (e.g., no samples are
deterministically connected to the same individ-
ual). More specifically, Yobs is the nobs 9 J matrix
with entries 1 if sample m was recorded in trap j
and 0 otherwise. Note that if we assume a Ber-
noulli observation model, each detection event
will constitute a single observation, while if we
assume a Poisson observation model, counts are
disaggregated into observations of single counts,
because counts from the same individuals cannot
be deterministically connected without certain
and unique identities. To visualize this, below is
an example of true and disaggregated observed
data set where N = 2 and J = 3:

Ytrue ¼ 2 0 0
0 1 1

� �
Yobs ¼

1 0 0
1 0 0
0 1 0
0 0 1

2
664

3
775

Methods—categorical SPIM
We propose a class-structured version of the

unmarked SCR model in which class membership
is determined by each individual’s full categorical
identity (e.g., full genotype). Here, we define a full
categorical identity to be an individual’s set of true
values for ncat categorical covariates, where ncat is
the maximum number of categorical covariates
considered, and multiple individuals in the popu-
lation can share the same full categorical identity.
We will modify the unmarked SCR model such
that single or multiple categorical covariates,
potentially partially or even fully unobserved, are
recorded with each observed sample at each trap.
Further, continuous covariates could be
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discretized into categories if it is safe to assume
there is no measurement error. The linked density
and categorical covariate models (joint process
model) are fully latent and we use the nobs trap-
referenced, observed categorical covariates to
make inference about this latent structure. The
observed data then consist of two linked data
structures: Yobs, an nobs 9 J capture history indi-
cating the trap at which each sample was
recorded and Gobs, an nobs 9 ncat identity history
recording the observed categorical covariate(s) of
each sample with category level enumerated
sequentially as described below, or recorded as a
0 if not observed.

For the joint process model, we assume that
each individual has a full categorical identity
associated with its activity center. Following
Wright et al. (2009), we assume that all possible
category levels for each categorical covariate are
known, with the number of categories for each
covariate l being nlevelsl , l = 1, . . ., ncat. Next, we
introduce the population category level probabili-
ties for covariate l, cl, of length nlevelsl and corre-
sponding to the enumerated category levels
(1; . . .; nlevelsl ) for covariate l. Then, we introduce
the N 9 ncat matrix Gtrue, where gtruei is the full
categorical identity of the individual with activity
center si. Finally, we assume the categorical
identity of each individual for each covariate
is distributed following the covariate-specific cate-
gory level probabilities according to gtrueil �
CategoricalðclÞ, implying that category levels are
independent across covariates (e.g., linkage equi-
librium in the genetic context) and individuals.
Using the example true and observed capture his-
tories above, potential true and observed struc-
tures for the categorical identities assuming 3
categorical identity covariates with 4 levels each
are as follows:

Gtrue ¼ 1 4 3
4 2 3

� �
Gobs ¼

1 4 3
1 4 3
4 0 3
0 0 3

2
664

3
775

In this case, the first two observed samples
could possibly have come from the same individ-
ual as could the third and fourth sample; how-
ever, the third sample could not have come from
the same individual as the first two samples. The
fourth sample with two unobserved categories

could possibly belong to the same individual as
that which produced the first three samples, with
only the third sample being a correct match. In
this example, potential values of l for any of the
cl for any of the 3 categories could be
(0.3, 0.1, 0.2, 0.4), corresponding to category
levels (1, 2, 3, 4), with the only requirement on
these category level probabilities being that they
sum to 1 for each identity covariate. Also, note
that each covariate may have a different number
of category levels.
The observation process is the same as

unmarked SCR except that a categorical identity,
potentially partially or fully latent, is associated
with each trap-referenced observation. The
missing data process could be a simple binomial
model for identification success, perhaps with
covariate-specific identification probabilities; how-
ever, if we assume that covariate observation val-
ues do not vary by individual or by category
level, the likelihood for the missing data process
does not change when updating latent identities
or latent categorical covariate values and can be
ignored in the MCMC algorithm. Therefore, we
make the assumption that covariate identification
probabilities do not vary by individual or category
level, but this assumption would be easy to relax.
The unmarked SCR model and categorical

SPIM use a process similar to data augmentation
to estimate population abundance and density
(Royle et al. 2007) and to model the uncertainty
in individual identity by providing latent struc-
ture to allow for different configurations of the
observed samples across the individuals in the
population (Chandler and Royle 2013, Augustine
et al. 2018). Unlike typical data augmentation,
the number of captured individuals, ncap, and
their capture histories are unknown in unmarked
SCR, so rather than augmenting the observed
capture history, we augment a possibly true cap-
ture history constructed by assigning individual
identities to the observed samples in Yobs based
on the spatial proximity of samples and the com-
patibility of their observed categorical identities.
We then augment Gtrue to size M 9 ncat, which

is initialized using the minimally implied cate-
gorical identity of the samples each individual is
initialized with, and the remaining elements of
Gtrue that are not determined by these samples
are simulated from the category level probabili-
ties. Similar to typical data augmentation, M is
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chosen by the analyst to be much larger than N
and we use z, a latent indicator vector of length
M, to indicate which individuals are in the popu-
lation; however, unlike typical data augmenta-
tion, this vector is fully, rather than partially
latent. We assume zi � Bernoulli(φ), inducing
the relationship N � Binomial(M, φ). Then,
population abundance is N ¼ PM

i¼1 zi and popu-
lation density, D, is N

A. See Appendix S2 for a full
description of the MCMC algorithm.

Note that ncap, the total number of individuals
captured, typically denoted by n and an
observed statistic in capture–recapture models, is
a derived, random variable in unmarked SCR
with a posterior distribution that quantifies the
magnitude of uncertainty in individual identity.
Specifically, the posterior sample for ncap on
each MCMC iteration is calculated following
ncap ¼ PM

i¼1ð
PJ

j¼1 Y
true
ij Þ[ 0—simply the number

of individuals currently allocated at least one
sample. As more categorical identity information
is added, the posterior distribution of ncap should
converge to the single, true value. Finally, we
introduce the derived vector, ID, of size nobs, that
records the latent individual, 1, . . ., M, each sam-
ple is assigned to. This vector is updated on each
MCMC iteration, producing a posterior for true
identity for each sample, which can be post-pro-
cessed to obtain pairwise posterior probabilities
that any two samples originated from the same
individual. The posterior distribution of the true
covariate values of samples with missing values
can also be recorded.

SIMULATIONS

We conducted two simulation studies (A and
B) to explore the performance of the categorical
SPIM.

Simulation A specifications
First, we conducted a simulation study to

demonstrate the utility of introducing an increas-
ing number of categorical identity covariates for
improving density estimation over the baseline
case of unmarked SCR. Further, we sought to
demonstrate that the effectiveness of adding cat-
egorical identity covariates for improving den-
sity estimation depends on the two axes of the
IDI, population density, and r. Here, the number
of identity categories is defined to be the total

number of unique categories implied by the ncat
covariates with nlevelsl each. We start with sam-
pling scenarios more challenging for unmarked
SCR than considered by Chandler and Royle
(2013) by considering scenarios with more sparse
detection data achieved by using a smaller trap-
ping array, a lower k0, and scenarios with higher
D given N. Specifically, our trapping array
consisted of 81 traps in a 9 9 9 grid with unit
spacing, buffered by 3 units to define the state
space of 225 units and we chose densities
D 2 {0.17, 0.35}, corresponding to N 2 {39, 78}.
We considered that populations were sampled
for K = 5 occasions for all scenarios.
We conducted simulations across 4 scenarios

with a 2 9 2 factorial design using low and high
values of r and D. Scenarios A1 and A2 were the
low r scenarios with r = 0.5, and scenarios A3
and A4 doubled r to 1. To account for compensa-
tion in the detection function parameters (Efford
and Mowat 2014) and maintain similar levels of
data sparsity with the larger r, we lowered k0
from 0.25 to 0.061 to approximately match the
expected number of captures for each individual
to that of the scenarios with r = 0.5 (E[caps]~1.65,
achieved by trial and error). On this unit spacing
grid, with r = 0.5, the majority of an individual’s
captures fell within a 4-trap area, whereas with
r = 1 the majority of an individual’s captures fell
within a 16-trap area. Scenarios A1 and A3 were
the high abundance scenarios with N = 78, and
scenarios A2 and A4 were the low abundance sce-
narios with N = 39. The approximate Identity
Diversity Indices (interpolated from Fig. 1) for
scenarios A1-A4 were 0.38, 0.23, 0.76, and 0.58.
Within each scenario, we explored 9 subscenarios
with differing numbers of identity categories,
with 1 identity category corresponding to
unmarked SCR. Following the unmarked SCR
subscenario, we sequentially added identity
covariates with 2 category levels each, leading to
the number of unique identity categories increas-
ing exponentially with base 2 (2, 4, 8, 16, 32, 64,
128, 256). As noted previously, these categorical
identities are not unique—they may be repre-
sented multiple times by different individuals in a
population, but with decreasing frequency as the
number of unique identity categories increase.
Further, scenario A2 was modified to better

disentangle the effects of increasing D from
increasing N. Increasing D by increasing N
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simultaneously increases uncertainty in individ-
ual identity and reduces data sparsity, which
have opposite effects on estimator precision.
Therefore, to better explore the effect of increas-
ing D on the uncertainty in individual identity, D
must be increased by constraining a fixed N into
a smaller state space. The state space can be
reduced in two ways; the number of traps can be
reduced, keeping the same state space buffer, or
the number of traps can be fixed while reducing
the state space buffer. In the first scenario, data
sparsity is increased since a lower proportion of
individuals will be located on the interior of the
trapping array and we suspect the absolute num-
ber of traps is important for unmarked SCR den-
sity estimation. In the second scenario, data
sparsity is decreased because a larger proportion
of individuals live on the interior of the trapping
array. In order to retain the same number of
traps, we chose to increase the density of sce-
nario A2 by reducing the state space buffer from
3 to 1 units, thus constraining the N individuals
into a smaller state space area (Scenario A2b).
The reduction in the state space area increased D
from 0.17 to 0.32, and raising the approximate
IDI value from 0.23 to 0.37. The factorial layout
for simulation scenario A can be found in
Table 1.

Simulation B specifications
We conducted a second simulation study to

demonstrate that the categorical SPIM can
accommodate partially observed categorical
identities (missing identity covariate values) and
provide a proof of concept for using partial geno-
types that are the result of failed DNA amplifica-
tion, rather than as part of the study design as
would be the case in the first set of simulations if
identity categories were genotype loci. We used

the parameter values from scenario A3 above,
but introduced imperfect detection to the
observed genotypes. We simulated data sets with
7 categorical identity covariates, each with 5
equally common category levels, and the cate-
gory value for each categorical covariate was
then observed with probability 0.5, leading to the
average categorical identity being observed at 3.5
of the categorical identity covariates. With 5
equally probable levels per identity covariate,
these identity covariates are more informative
than the 2-level covariates used in simulation sce-
nario A and closer in information content to a
multilocus genotype. While each genotype loci
usually has more than 5 levels, they are usually
not equally distributed, so limiting the number
of equal probability levels per identity covariate
to 5 likely represents a more fair comparison to
genotypes in practice. We fit the categorical SPIM
to these data sets, assuming all partial categorical
identities were usable (Scenario B1) or 75% of the
partial categorical identities were usable as might
be the case when using partial genotypes if a
subset was deemed to be unreliable due to the
likelihood of containing genotyping errors (Sce-
nario B2). We then fit the null SCR model to the
perfectly observed data for comparison (Scenario
B3).

Simulation MCMC specifications
For simulation scenario A, we simulated and

fit our model to 144 data sets within each subsce-
nario, and for simulation scenario B, we simu-
lated and fit our model to 128 data sets (differing
due to cluster computing availability). Within
each subscenario of simulation scenario A, we
ran 3 chains for 100,000 iterations for the
unmarked SCR estimator. We calculated the Gel-
man-Rubin statistic, Rc, (Gelman and Rubin
1992) and only computed inferential quantities
(listed below) for sets of chains that indicated
convergence, which we define as those with
Rc < 1.1 for parameter N. If fewer than 95% of
the sets of chains indicated convergence, we ran
3 chains for 100,000 iterations for the next sce-
nario with a categorical identity covariate (or
additional covariate), until >95% indicated con-
vergence. After that, we reverted to a single
chain to save computation time for the remaining
subscenarios. For simulation scenario B, there
were no convergence problems, so we ran a

Table 1. Factorial design for the simulation scenarios
A for two levels of abundance (N) and detection
function spatial scale parameter (r).

r

0.5 1.0

N 78 A1 � D = 0.35 A3 � D = 0.35
39 A2 � D = 0.17 A4 � D = 0.17

A2b � D = 0.32

Note: Subscenarios A2 and A2b vary individual density
(D) for a fixed abundance by varying the state space extent.
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single chain for 60,000 iterations. We calculated
point estimates using the posterior mode and
interval estimates using the highest posterior
density (HPD) interval. We were interested in the
frequentist bias and coverage of the categorical
SPIM estimator, the accuracy of the estimator
depicted visually by the variance and right skew
of the sampling distribution and quantitatively
by the mean squared error and coefficient of vari-
ation (CV: 1009posterior sd/posterior mode),
and the precision, quantified by the mean 95%
HPD interval width. Also of interest was the use
of the precision of ncap, also quantified by the
mean 95% HPD interval width, as a metric of
uncertainty in the individual identity of observed
samples that can predict the uncertainty in N.

Simulation A results
No unmarked SCR scenarios led to reliable

convergence, with the percentage of simulated
data sets for which the Gelman-Rubin statistic,
Rc, indicated convergence ranging from 0.52 to
0.90 (Appendix S3: Table S1). The percentage of
simulated data sets for which Rc indicated con-
vergence increased as more categorical identity
covariates were added, with >95% convergence
achieved in all scenarios with 2 categorical iden-
tity covariates. Inspection of the MCMC chains
(not shown) indicated that the main cause of lack
of convergence was data realizations for which r
was not identifiable. The unmarked SCR abun-
dance estimator was right-skewed with high
variance (Figs. 2 and 3), except in Scenario A2

Fig. 2. Histograms of the posterior modes and mean 95% credible interval widths of abundance (N) estimates
plotted against the number of identity categories in scenarios A1, A2, and A2b with baseline detection rate
k0 = 0.25 and detection function spatial scale parameter r = 0.5. Population density, D varies across scenarios,
and A2b is the scenario that increases D while N remains fixed. Note the number of identity categories increase
exponentially as 2-level identity covariates are added sequentially. Also, note that the histograms depict the med-
ian posterior mode, while the mean posterior mode is used to calculate the expected values and bias in
Appendix S3: Table S1. The red line depicts the simulated value of N.
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where both r was small and abundance was low.
The unmarked SCR estimator had a large mean
95% credible interval [CI] width relative to abun-
dance in all scenarios. The unmarked SCR abun-
dance estimates were generally positively biased
(Appendix S3: Table S1), although the positive
bias in Scenario A4 was only 5%. The only sce-
nario where the unmarked SCR estimator was
negatively biased was A3; however, because the
A3 scenario with 1 categorical identity covariate
was positively biased, we attribute the observed
negative bias in the A3 unmarked SCR scenario
to the 44% of simulations that were discarded
due to lack of convergence. Data sets that did not
lead to convergence likely disproportionately
correspond to those producing N estimates in the
upper half of the sampling distribution because

they disproportionately had more capture events
(data not shown).
Adding and increasing the number of identity

categories (from 2 to 256 using 8 2-level cate-
gories) reduced bias and increased precision in
all scenarios, but with diminishing returns as
more identity categories were added. The reduc-
tion in mean 95% CI width for ncap by the intro-
duction of identity categories was closely related
to the reduction in mean 95% CI width for abun-
dance; however, the relationship was not linear
and varied by scenario (Fig. 4). More identity
categories were required to reach maximum pre-
cision when abundance was higher and r larger.
The largest improvement in precision and abun-
dance with the addition of identity categories
was seen in the low abundance, high density,

Fig. 3. Histograms of the posterior modes and mean 95% credible interval width of abundance (N) estimates
plotted against the number of identity categories in scenarios A3 and A4 with baseline detection rate k0 = 0.061
and detection function spatial scale parameter r = 1. Population density, D, varies across scenarios. Note the
number of identity categories increases exponentially as 2-level identity covariates are added sequentially. Also,
note that the histograms depict the median posterior mode, while the mean posterior mode is used to calculate
the expected values and bias in Appendix S3: Table S1. The red line depicts the simulated value of N.
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low r scenario (A2b), where the majority of
uncertainty in abundance was removed with the
addition of one 2-level categorical covariate.
Note that the precision of estimates in scenario
A2b converged to a lower value than scenario A2
because the same N = 39 individuals were con-
strained to be located within 1 unit of the trap-
ping array, rather than 3 units, decreasing data
sparsity. Positive bias in N̂ was <5% in scenarios
A1, A2, A2b, and A4 when 2 identity categories
were available, and <5% in Scenario A3 when 8

identity categories were available. With no or
very few identity categories, the latent identity
samples tended to be allocated to more individu-
als than were actually captured, resulting in posi-
tive bias in ncap, with more bias in the large r
scenarios, and we attribute this as a cause for the
positive bias in N̂.
Increasing r decreased the precision and accu-

racy of the unmarked SCR and categorical SPIM
ncap and N estimates (A1 vs. A3 and A2 vs. A4;
Appendix S3). Increasing D by increasing N
decreased the precision and accuracy of the ncap

estimates, but increased the precision and accu-
racy of the N estimates demonstrating that the
additional uncertainty in individual identity was
more than offset by the lower data sparsity (A1
vs. A2 and A3 vs A4). Increasing D without
increasing N decreased the precision and accu-
racy of both ncap and N estimates. The IDI did
not perfectly predict the metrics of precision and
accuracy across scenarios that changed both r
and D for all levels of identity categories, but the
IDI generally correlated negatively with preci-
sion and accuracy (Appendix S3).

Simulation B results
The partially observed categorical identity

covariate simulations (scenarios B1-3) produced
minimally biased abundance point estimates (1
and 2.5% positive bias) and interval estimates
that were nearly as precise as the scenario in
which the identities were perfectly observed
(Table 2). In these scenarios, categorical identities
were observed at half of the 7 identity covariates,
on average, producing data sets with an average
of <1 sample observed at all category levels—
data sets that would be unusable if full
categorical identities were required, as might be
the case with genetic capture–recapture requiring

Fig. 4. The relationship between uncertainty in the
number of individuals captured, ncap and uncertainty
in abundance, N for each of the 5 A scenarios. For each
of the 5 scenarios plotted, the scenario with maximal
uncertainty in ncap is the unmarked spatial capture–
recapture estimator and the uncertainty in ncap con-
verges toward zero as identity categories are added
one 2-level identity covariate at a time.

Table 2. Simulation results for the partial genotype analyses.

Scenario k̂0 r̂ N̂ n̂cap Cov NWid ncap Wid ncap # complete

True 0.250 0.500 38.0 . . . . . .
B1 0.253 0.490 39.4 18.4 0.953 27.6 1.8 18.5 0.48
B2 0.189 0.481 40.0 17.1 0.953 32.7 2.4 17.0 0.31
B3 0.256 0.492 38.7 . 0.953 26.1 . 18.5 64.31

Notes: Scenarios B1 and B2 had loci amplification probabilities of 0.5. Scenario B1 used all partial genotype samples, while
Scenario B2 used 75% of the partial genotype samples. Scenario B3 is a typical spatial capture–recapture model using all full
genotype samples for comparison. Parameter mean point estimates are presented, along with coverage of N (Cov), the mean
95% credible interval widths for N (N Wid) and ncap (n wid), and the mean number of samples with complete genotypes (#
complete). Dots indicate non-applicable cells.
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complete genotypes. In Scenario B1, where all
partial categorical identities were used, the inter-
val estimate was 95% as precise as the complete
data analysis, and in Scenario B2, where 25% of
the partial categorical identities were unusable,
the interval estimate was 80% as precise than the
complete data analysis. In both scenarios, an
average of 3.5 categorical covariates provided
enough information that the uncertainty in ncap

was small (mean credible interval widths of 1.8
and 2.4 relative to mean ncap of 18.5 and 17.0 in
B1 and B2, respectively).

APPLICATION—CENTRAL APPALACHIAN BLACK
BEARS

We applied the categorical SPIM to a hair trap-
ping data set that used 7 microsatellite loci for
individual identification of American black bears
(Ursus americanus) in the Central Appalachians,
USA. This data set comes from a study con-
ducted along the Kentucky-Virginia, USA, bor-
der across 2 study areas during 2012 and 2013 to
estimate the population density and abundance
of a recently reintroduced population that was in
the process of recolonizing vacant range (Mur-
phy et al. 2016). We chose to use the data set
from the larger study area in 2013 because our
model should perform better on the larger trap-
ping array and more samples were collected in
2013 than in 2012 at this site. The specifics of the
data collection methods are described by Mur-
phy et al. (2016); of particular relevance is that
eighty-one hair traps were deployed across the
215-km2 study area with an average trap spacing
of 1.6 km, and all traps were checked weekly for
8 consecutive weeks, with a week constituting a
capture occasion. Similar to most bear hair trap-
ping studies, hair samples were subsampled for
genotyping because of the prohibitive costs of
genotyping thousands of samples, such that at
most 1 hair sample per trap per occasion pro-
duced an individual identity. The capture and
subsampling processes resulted in 95 samples
from 45 females and 87 samples from 37 males,
determined using the P(sib) criterion. The spatial
distribution of traps and individually identified
hair sample observations are depicted in Fig. 5.
The microsatellites used were G10H, G10L,
G10M, MU23, G10J, G10B, and G10P, which had
genotype frequencies of 19, 22, 19, 17, 12, 15, and

10 for females and 21, 18, 18, 22, 14, 13, and 10
for males. Despite the large number of genotypes
at each locus, the majority of individuals shared
just 2–4 genotypes at each locus, making them
less informative than if the loci-specific geno-
types were equally distributed as they were in
our simulation studies.
The goal of this analysis was to fit the categori-

cal SPIM using from 1 to 7 loci, added in the
order listed above, and to compare the estimates
to the null SCR estimate that does not allow for
any uncertainty in individual identity. Further,
we also consider a scenario adding partial geno-
type samples (2 for females, 4 for males) into the
analysis that were originally discarded. For all
genotype scenarios, the trapping array was buf-
fered in the X and Y dimension by 3 km for
females and 6 km for males, leading to state
space sizes of 1042.5 km2 and 1473.4 km2 for
females and males, respectively. For each sex-
specific, 1-7 loci data set, we ran 32 Markov
chains for 250,000 iterations each, thinned by 50,
and discarded the first 25,000 iterations as burn
in, leaving 1.4 million samples from the

Fig. 5. Mean male and female capture locations with
spatial recaptures for the Kentucky black bear data set.
Male 28 is highlighted in yellow because it had a large
spatial recapture and was not detected at several traps
in between the two traps where it was detected, requir-
ing more loci for the categorical spatial partial identity
models to link these two samples together.
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posterior. This large number of posterior samples
was likely far more than necessary; however, it
allowed us to explore the behavior of the MCMC
chains as the last uncertainty in ncap was
removed by adding genotype information (see
Appendix S4). Because the hair sample subsam-
pling process allowed for at most 1 sample per
individual/trap/occasion, we used a Bernoulli
observation model. The metrics of comparison
were the point estimates (posterior modes), pos-
terior standard deviations, and coefficients of
variation (1009 posterior sd/posterior mode) for
abundance as well as the posterior distributions
of ncap. Note, however, that the analyses adding
the partial genotypes should not be expected to
reproduce the null SCR point estimates, standard
deviations, and number of individuals captured
because they included additional data not used
by the null SCR estimate.

Application—results
The categorical SPIM estimates (Table 3) for

both sexes generally demonstrated the same pat-
terns seen in the simulations. Abundance esti-
mates with few identity categories were
positively biased (relative to the SCR estimate)
because the estimates of r were negatively
biased and/or the estimates of ncap were posi-
tively biased. The magnitude of bias was larger
for males, either partially or fully the result of a
larger r, estimated to be 2 times larger than
females. As more loci were added, the categorical
SPIM abundance estimates and their posterior
standard deviations converged toward those of
the SCR model, the posterior modes of ncap con-
verged toward the true number captured, and
the posterior variance of ncap converged toward
0 (Fig. 6). The coefficient of variation for all cate-
gorical SPIM estimates was lower than 0.20,
except for the 1 locus male estimate.
The 1 locus female estimate was only 20% per-

cent less precise than the full SCR estimate, as
judged by the CV, with a positive bias (relative
to the complete data estimate) of 8.6%. The 3 loci
female estimate was substantially better—7.6%
less precise than the full SCR estimate and posi-
tively biased by only 2.9%. The 4 loci female
estimate was effectively equivalent to the full
SCR estimate, with 3% less precision and mini-
mal bias. The 5–7 loci female estimates were
negligibly improved. Adding 2 partial genotype
samples reduced the posterior standard devia-
tion by 2.7% and coefficient of variation by
1.9%. One partial genotype sample was consis-
tent with two different individuals in the full
genotype data set, matching one with posterior
probability of 0.452 and the other with posterior
probability 0.544, leaving just a 0.004 posterior
probability that this sample was from a new
individual. The higher posterior match probabil-
ity of 0.544 corresponded to the complete geno-
type individual that was captured at the same
trap as the partial genotype sample. The other
partial genotype matched an individual with 2
captures in the full genotype data set with pos-
terior probability 0.997, leaving a probability of
0.003 that this was a new individual, and add-
ing a high probability spatial recapture for this
individual. These genotypes can be found in
Table 4.

Table 3. Sex-specific estimates of the detection func-
tion baseline encounter rate, k0, the detection func-
tion spatial scale parameter, r, and abundance from
regular spatial capture–recapture (SCR, Full), cate-
gorical spatial partial identity models (SPIM) using 1
–7 loci (1L–7L), and categorical SPIM with 7 loci,
adding partial identity samples not included in the
SCR estimate (7L+).

Genotype data k̂0 r̂ N̂ n̂cap N̂ SE N̂ CV

Full 0.156 0.92 182.9 45 28.7 15.7
1L 0.204 0.79 198.7 44.66 37.4 18.8
2L 0.175 0.82 210.0 46.53 36.9 17.6
3L 0.161 0.90 188.4 45.06 31.8 16.9
4L 0.157 0.92 183.4 45.00 29.6 16.1
5L 0.156 0.92 183.0 45.00 28.8 15.8
6L 0.156 0.93 182.5 45.00 28.9 15.8
7L 0.157 0.93 182.2 45.00 28.9 15.9
7L+ 0.163 0.92 180.2 45.00 28.1 15.6
Full 0.066 2.04 117.5 37.00 19.0 16.2
1L 0.113 0.74 436.9 52.55 165.0 37.8
2L 0.081 1.58 159.6 40.38 28.8 18.0
3L 0.079 1.73 137.7 38.13 23.2 16.9
4L 0.073 1.85 127.2 37.89 22.3 17.5
5L 0.067 2.02 118.8 37.00 19.9 16.7
6L 0.066 2.04 118.1 37.00 19.3 16.3
7L 0.066 2.04 117.8 37.00 19.1 16.2
7L+ 0.064 2.03 130.0 40.00 20.7 15.9

Notes: Point estimates are the posterior mode, uncertainty
is quantified by the posterior standard deviation (N̂ SE) and
the coefficient of variation (N̂ CV). For the categorical SPIMs,
n̂cap is the estimated number of captured individuals. Female
estimates are listed first, followed by males.
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The 1 locus male estimate was too biased (rela-
tive to the full SCR analysis) and imprecise to be
of use, whereas the 2 and 3 loci male estimates
had reasonable precision but perhaps too much
positive bias to be useful. The 4 loci male esti-
mate was 7.4% less precise than the full SCR esti-
mate, with a positive bias of 7.6%. The 5 loci
estimate was only negligibly less precise than the
full SCR estimate, and adding the 6th and 7th loci
improved precision negligibly. Adding 4 partial
genotype samples modestly increased the abun-
dance estimate, increased the posterior standard
deviation (due to the larger point estimate), and
decreased the coefficient of variation by 1.9%. The
posterior probability that three of the partial geno-
type samples each came from separate individu-
als not represented in the full genotype data set
was 1, while the fourth partial genotype sample
matched with 8 other samples from 1 individual,
each with posterior probability 1.

DISCUSSION

We developed a spatial capture–recapture
model for categorically marked populations that
uses any number of partially identifying categor-
ical covariates to reduce the uncertainty in the
individual identity of latent identity samples via
three mechanisms. First, any samples that are
inconsistent at any observed covariates are deter-
ministically excluded from matching. Second, as
the number of identity categories created by
covariates increases and as the category level
probabilities for each covariate become more
equal, it is increasingly unlikely that more than
one individual locally, and in the population, will
have the same full categorical identity. Third, the
spatial location of the latent identity samples and
the estimated detection function scale parameter,
r, spatially restrict which samples matching at
all observed covariates could have been

Fig. 6. Posterior distributions for the number of unique individuals captured (ncap) for the Kentucky black bear
female and male data set using 1, 2, and 3 loci. True values from full data sets are marked in red (45F, 37M).
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produced by the same individual. Thus, the cate-
gorical SPIM reduces uncertainty in the individ-
ual identity of latent identity samples by
providing deterministic identity exclusions and
reducing the uncertainty in probabilistic identity
associations using both spatial and categorical
covariate information. The categorical SPIM sim-
ulation and MCMC functions are maintained in
the SPIM R package (Augustine 2018) and can
also be found in Supplement S1.

A specific case of categorically marked popula-
tions that is of practical importance is that in
which individuals are marked by multilocus
genotypes. In this case, each locus of a genotype
is a single categorical covariate and the categori-
cal SPIM provides an incremental model for
genotype uniqueness as the information about
individual identity in the genotypes increases.
Thus, the categorical SPIM is an alternative to
using the P(ID) and P(sib) criteria currently used
that allows for uncertainty in individual identity
as might be the case when fewer loci are ampli-
fied than necessary to meet probability of iden-
tity criteria, which might occur in populations

with very low genetic diversity (McCarthy et al.
2009). The categorical SPIM also introduces the
possibility of using fewer loci than necessary to
meet probability of identity criteria by design,
trading some certainty in individual identity for
lower genotyping costs. Genotyping costs do not
increase linearly with the number of loci and
Puckett (2017) found that variability in the num-
ber of loci used in microsatellite studies explains
very little variability in total project costs. How-
ever, there may be some cost savings if using
fewer loci allows for the use of fewer multiplex
panels, which explain a moderate amount of
variability in total project costs (Puckett 2017).
Simulation scenarios A1–4 (Figs. 2 and 3;

Appendix S3: Table S1) show the importance of
population abundance, density given abundance,
and r for the accuracy and precision of the
unmarked SCR and categorical SPIM estimators.
Unmarked SCR estimates from populations with
lower density given abundance and smaller rs
showed less bias (Appendix S3: Table S1), and
unmarked SCR estimates were more precise for
populations with higher abundances, lower den-
sity given abundance, and smaller rs. More cate-
gorical identity groups were necessary to
maximize precision when abundance was higher
and r larger; however, for the scenario that
raised D without raising N, the majority of preci-
sion gains came from the addition of the first 4
identity categories. This scenario raising D with-
out raising N demonstrates the importance of
disentangling the relationship between N and D
when assessing the performance of unmarked
SCR and SCR models with latent or partial indi-
vidual identities, more generally. Further, it sug-
gests that categorical identity covariates are more
effective in populations where uncertainty in
individual identity is due to a large D relative to
N, rather than a large r. We propose that the
uncertainty in ncap, the number of individuals
actually captured, is a good measure of the over-
all magnitude of uncertainty in individual iden-
tity for the unmarked SCR and categorical SPIM
estimators. Figure 4 demonstrates that the preci-
sion of N increases as the precision of ncap

increases through the introduction of categorical
identity covariates, though with diminishing
returns (with precision quantified by the mean
95% credible interval width). The rate at which
precision in N increases with increasing precision

Table 4. Two partial genotype black bear samples and
the full 7-loci genotype samples they had a positive
posterior probability of matching with.

Sample no. Genotype X Y

1 6 7 6 7 4 7 7 330461 4090636
2 6 7 6 7 4 7 7 329667 4088966
3 9 12 1 7 7 2 7 331260 4090333
4 9 12 1 7 7 2 7 330620 4089362
5 . . . 7 . . . 320620 4089362
6 7 8 1 1 2 8 2 333045 4091015
7 7 8 1 1 2 8 2 333045 4091015
8 . . 1 1 2 . . 331455 4091851

Notes: The first five samples correspond to one partial
genotypes (sample 5) and its matches (samples 1–4) and the
final three samples correspond to a second partial genotype
(sample 8) and its matches (samples 6 and 7). Each loci-level
genotype is uniquely numbered, for example, the value 6 at
loci 1 corresponds to a genotype with 158 repeats for allele 1
and 160 repeats for allele 2. X and Yare the coordinates where
the samples were collected and missing loci-level genotypes
are indicated with dots. The posterior probabilities that full
genotype sample pairs 1–2, 3–4, and 6–7 each came from the
same individual were 1. The posterior probabilities that par-
tial genotype sample 5 came from the same individual as
samples 1 and 2, the same individual as samples 3 and 4, or a
new individual were 0.452, 0.544, and 0.004, respectively. The
posterior probability that partial genotype sample 8 came
from the same individual as samples 6 and 7 was 0.997, with
a 0.003 probability this sample came from a new individual.
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in ncap depends on the parameter values of each
scenario (k0, r, D, and N given D), with greater
precision gains in N to be had using categorical
identity covariates in scenarios where there is
greater uncertainty in individual identity in the
unmarked SCR estimator.

The IDI correlated negatively with the preci-
sion and accuracy of ncap estimates. For the sce-
narios that increased the IDI holding N fixed (A1
vs. A3, A2 vs. A4, A2 vs, A2b), the IDI also corre-
lated negatively with the accuracy and precision
of N estimates. In scenarios that increased D by
increasing N (A1 vs A2, A3 vs. A4), the increase
in uncertainty in ncap was outweighed by the
decrease in data sparsity and N estimates were
more precise and accurate. Our exploration of
IDI values here is very limited and a larger simu-
lation study is necessary to determine how well
this index correlates with estimator performance
and to what degree do scenarios with differing
population density and r values producing the
same index value share the same estimator per-
formance. Our results suggest that scenarios with
differing D and r values that produce the same
IDI values will not necessarily produce the same
precision in ncap. We speculate that this is related
to how the latent identity samples interact with
different densities of activity centers in the SCR
process model. Specifically, when D is large,
there are necessarily more nearby individuals
that a latent identity sample can be allocated to,
which increases the uncertainty in individual
identity. Finally, note that some of the largest val-
ues of the IDI may represent ecologically implau-
sible or even impossible scenarios since home
range size generally varies inversely with density
(Efford et al. 2016).

We demonstrated that the unmarked SCR
abundance estimator can be biased (Appendix S3:
Table S1) when data are sparse and that this bias
is magnified when density is higher for a fixed
abundance and/or r is larger. Further, none of the
unmarked SCR scenarios we considered led to
convergence rates >90%, with only 52% of the
MCMC chains converging for one scenario.
Inspection of the MCMC chains indicated that r
was not identifiable for many realizations of the
data for which convergence was not indicated.
These patterns should also be seen in other SCR
models with latent individual identities. For
example, these patterns should be seen in SMR

when using few marked individuals and/or when
detection data for the marked individuals are
sparse as can occur when using natural marks
and/or surveying low density populations. In fact,
even though our simulation specifications were
more challenging than those of Chandler and
Royle (2013), many studies in practice use fewer
than 81 traps that we considered and an expected
1.65 captures per individual (including the indi-
viduals captured 0 times) is likely optimistic for
many sampling scenarios. The addition of marked
individuals should allow for more reliable estima-
tion for the unmarked population component
because the marked individuals provide more
information about the detection function parame-
ters and reduce the number of samples with latent
or partial individual identifications. Further, the
use of individual-linked telemetry data and/or a
marking process capture history in conjunction
with generalized SMR (Whittington et al. 2018)
improves the estimation of model parameters and
thus, the reliability of density estimates. Still, until
some practical guidelines can be established, relat-
ing estimator performance to abundance, density
given abundance, and metrics of data sparsity
(e.g., k, K, number/spacing/extent of traps), we
recommend researchers conduct simulations with
unmarked SCR or SMR parameter values appro-
priate to their study design to determine if their
study designs are sufficient to produce reliable
estimates using these models. If not, the categori-
cal SPIM offers a second route to remove bias and
increase precision via reducing the uncertainty in
individual identity, with the first route being the
reduction of uncertainty in r using telemetry data
(Sollmann et al. 2013) and/or informative priors
(Chandler and Royle 2013, Ramsey et al. 2015).
Simulation scenarios B1–3 (Table 2) demon-

strate a proof of concept for using data sets
where some or most of the full categorical identi-
ties are partial (missing values for the identity
covariates) such as partial genotypes. With a 0.5
probability of successful amplification at each
locus, no data sets produced enough full geno-
type samples that would have been usable in a
model that required certain individual identifica-
tion, but the categorical SPIM produced an esti-
mate that was 95% as precise as the estimate
where all loci were amplified with probability 1.
Even assuming only 75% of the samples were
usable, the estimate was 80% as precise.
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Therefore, the categorical SPIM provides a way
to use the partial identity information, such as
partial genotype samples that are currently being
discarded. We caution, however, that if partial
genotype samples are more likely to have geno-
typing errors, the categorical SPIM needs to be
extended to accommodate those errors, or per-
haps a subset of the partial genotype samples
could be deemed reliable through consultation
with a wildlife geneticist. For example, allelic
dropout could be ruled out by discarding any loci
that were homozygous or using appropriate tests
(e.g., available in MicroChecker, Van Oosterhout
et al. 2004), or partial genotypes could perhaps be
deemed reliable if they repeatedly produced the
same partial genotype after a sufficient number of
amplification attempts in a multi-tubes approach.
Alternatively, adapting the allelic dropout model
of Wright et al. (2009) to the categorical SPIM
would be straightforward and Wang (2017) pre-
sent a model for false alleles that could be
adopted if sufficiently general. Both of these error
processes would require the modeling of replicate
amplification attempts rather than the consensus
genotypes used here. We do note, however, that
the density estimate precision that is possible for
any set of partial genotypes will depend on the
number of loci available, the underlying genetic
diversity, and the percentage of genotype infor-
mation remaining in the data set (in addition to
the typical SCR model parameters). We expect
qualitatively similar results to the simulations in
Scenario B in typical data sets, but the expected
results for a given population should be deter-
mined via simulation using the known or best-
guess numbers and frequencies for the loci-level
genotypes. Better results will be obtained for the
same level of missing genotype information in
populations with higher genetic diversity.

The bear genotype analysis demonstrates that
the categorical SPIM estimator performed simi-
larly on a real-world data set as it did for simu-
lated data; however, the positive bias in the male
estimates with few loci was larger than seen in
the simulated data sets. We suspect individual
heterogeneity in detection function parameters,
particularly r, may have been present in the
male bear data set. If so, this could have led to
poorer performance with few loci/identity cate-
gories, and the requirement of more loci/identity
categories to remove bias and increase precision

than if there were no individual heterogeneity.
The distribution of observed spatial recaptures in
Fig. 5 does seem to suggest individual hetero-
geneity in r for males, with one particular indi-
vidual having a very long-distance spatial
recapture and many individuals having no spa-
tial recaptures. The samples for the individual
with a long-distance spatial recapture were
rarely combined into one individual until 3 loci
were used and as ncap = 37 (the correct number
of captured males) became increasingly probable
with the addition of more loci at which point, the
estimate of r converged upwards to the full SCR
estimate. This behavior is consistent with the
simulations where r is large, but is more pro-
nounced in this data set, which could be
explained by individual heterogeneity in the
detection function parameters. A second factor
that tends to split the samples from this poten-
tially large r individual apart is that there were
several traps between the two traps where this
individual was captured and the categorical
SPIM found it unlikely that this individual
would not have been captured at these traps clo-
ser to its estimated activity center until enough
categorical covariate information was available
to make it even more unlikely that two individu-
als in the population had the same multilocus
genotype. The second longest spatial recapture
in the male data set spans a gap with no traps
and required fewer loci to reliably link its sam-
ples together.
The posterior distributions of ncap in Fig. 6

demonstrate what we believe is a source of the
positive bias in the categorical SPIM estimator.
With the addition of just 2 loci for females and 1
locus for males, all incorrect identity associations
were ruled out by the genotype information and
the spatial distribution of the samples. However,
a 1 or 2 loci genotype is not sufficient to guaran-
tee the local uniqueness of a genotype, leading to
a situation in which samples cannot be erro-
neously combined into fewer individuals than
produced them, but they can be erroneously split
apart into more individuals than produced them.
Thus, in these scenarios, ncap can never take a
value lower than the true value, but rather must
always be equal to or larger than the true value.
We believe the identity exclusions are removing
the lower tail of the posterior distribution of ncap

that would be present in the unmarked SCR
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estimator and introducing some positive bias,
which can be removed by adding more categori-
cal identity information and reducing the upper
tail of the posterior of ncap. In the simulations,
this occurs with the addition of just a few iden-
tity categories; however, individual heterogene-
ity in detection function parameters as argued
above may require more categorical identity
information to remove the positive bias in ncap

and thus N.
This black bear genotype analysis also demon-

strated the use of genotypes that are partial as a
consequence of DNA amplification failure, with
two caveats. First, there were very few usable
partial genotypes because of the DNA amplifica-
tion protocol used, in which samples at the same
trap/occasion were subsequently genotyped until
a full genotype was obtained. This process led to
the partial genotypes matching the complete
genotype individual at a particular trap/occasion
with high probability because bears usually leave
multiple hair samples in a hair snare, violating
the Bernoulli observation process. Second, we
assumed the partial genotype samples did not
contain any genotyping errors. Three of the 6
partial genotype samples used matched other
individuals in the population with high probabil-
ity, but 3 partial genotypes had posterior proba-
bilities of 1 that they were new individuals.
These may have indeed been new individuals, or
perhaps they did not match any other individu-
als because the partial genotypes were corrupted.
Including partial genotypes in this manner needs
to be done with caution and in consultation with
a wildlife geneticist, or the categorical SPIM
could be extended to accommodate genotyping
errors (Wright et al. 2009). If partial genotypes,
or even a subsample of the partial genotypes, can
be deemed reliable, including them in the analy-
sis can increase the precision of abundance and
density estimates, especially if high probability
spatial recaptures can be added, as was the case
in the female bear data set.

We now will discuss four assumptions of par-
ticular importance that we make for the categori-
cal SPIM. First, and perhaps most consequential,
is that there is no individual heterogeneity in
detection function parameters, or similarly, there
is no transience in the activity centers during the
time of the survey (Royle et al. 2016). Like
unmarked SCR and spatial mark–resight (SMR),

the categorical SPIM uses the detection function
likelihood to determine how likely it is that each
latent identity sample came from each individ-
ual. As demonstrated in Appendix S1, of the
detection function parameters, r largely determi-
nes the degree to which samples from different
individuals overlap in space. If there is individ-
ual heterogeneity in detection function parame-
ters, especially r, and the SCR model does not
include this individual heterogeneity, an average
k0 and/or r will be estimated, except this average
will be a biased estimate since the detected sam-
ples will disproportionately belong to the more
detectable individuals. Still, the latent identity
samples from the most detectable individuals
will tend to be incorrectly split across two or
more latent individuals because their true spatial
distribution of samples will be deemed unlikely
by the model based on the averaged k0 and/or r
values. Therefore, ncap will tend to be biased high,
introducing positive bias into N. The black bear
example suggests that individual heterogeneity in
detection function parameters (if it was present)
can be overcome with increasing identity cate-
gory information to correctly reproduce the true
ncap, but adding individual heterogeneity to the
categorical SPIM detection model (as well as
unmarked SCR and SMR) would be required to
obtain appropriate abundance estimates. This
should be investigated in the future, although we
expect the introduction of individual heterogene-
ity in detection function parameters to drastically
increase the uncertainty in individual identity
and, thus, the utility of the categorical SPIM,
unmarked SCR, and SMR for density estimation.
A better strategy would be the use of covariate-
specific detection function parameters for specific
covariates such as the sex, if the subsets of the
population that have different detection function
parameters can be at least partially identified
(Royle 2009, Sollmann et al. 2011).
The second assumption of note is that all possi-

ble category levels are known, which may not be
the case for genotypes. There are two ways in
which genotypes can be identified and enumer-
ated for the categorical SPIM: identifying all
observed genotypes at each locus, or identifying
all implied genotypes at each locus based on the
observed alleles at each locus. The latter method
is certainly more thorough, but given sufficiently
large data sets, any unobserved genotypes will
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occur in the population very rarely. Regardless,
there will always be the possibility that very low
probability genotypes exist in the population that
were not observed in the data set, and not
accounting for these genotypes will introduce
negative bias in abundance estimates (Wright
et al. 2009), though the magnitude of bias will be
small if the majority of genotypes with non-negli-
gible frequencies are identified. Wright et al.
(2009) raise the possibility of using independent,
reference genotypes from the same population to
improve abundance estimates. This information
could aid in identifying all possible genotypes
for each locus and could also be used to aid the
estimation of genotype frequencies, which would
be especially helpful for sparse data sets. The lat-
ter use would require that the reference geno-
types were representative of the population
subject to capture but did not contain any of the
same individuals, which would violate indepen-
dence (Wright et al. 2009).

The third assumption of note is that the full
categorical identities are independent among
individuals. When using genotypes, this assump-
tion will be violated if genetic structure exists at
the home range level as a result of relatedness,
natural or anthropogenic impediments to move-
ment, or other factors. Due to the importance of
the spatial proximity of samples in the categori-
cal SPIM, the combination of relatedness and
philopatry (e.g., female black bears) can lead to a
spatial correlation in genotypes across the land-
scape (Moyer et al. 2006). This could introduce
negative bias if sufficiently strong because latent
identity samples of nearby related individuals
will be erroneously combined into one individ-
ual too often when using few loci data sets. We
suspect spatial correlation in genotypes at the
home range level will be weak in most spatially
structured, non-isolated populations, and the cat-
egorical SPIM to be robust to this effect, although
this might not be the case for species such as
canids (Canis sp.) that travel in packs of highly
related individuals. As the spatial uniformity of
activity centers can be regarded as a weak prior
for the distributions of individuals across the
landscape (Royle et al. 2013), the spatial unifor-
mity of category levels across the landscape is
likely a similarly weak prior with the posterior
able to deviate substantially from spatial unifor-
mity, given sufficient data. Regardless, the

positive bias from individual heterogeneity in
detection function parameters will likely
outweigh any negative bias from the non-inde-
pendence of genotypes, but this effect should be
further investigated. The robustness of the cate-
gorical SPIM to assumption violations in typical
genetic data sets can be further established by
investigating how well it can reproduce estimates
from full data sets, as we did in the black bear
application, across many species and study areas.
The fourth assumption we will discuss is that

the categorical covariates are independent of one
another. When using genotypes, this is equivalent
to linkage equilibrium, which can be tested for
(Rousset and Raymond 1995), and results from a
linkage disequilibrium test for the black bear data
set used in our application did not detect nonran-
dom association of alleles (Murphy et al. 2016).
When present, linkage disequilibrium causes
pseudoreplication in genetic data sets (Selkoe and
Toonen 2006), which we expect to introduce nega-
tive bias into the categorical SPIM estimator
because there will be less variability than expected
in the full categorical identities. Non-indepen-
dence of the categorical covariates may occur for
other types of data; for example, when using nat-
ural marks, body size and sex may not be inde-
pendent. In this case, a composite covariate that
combined body size and sex could be constructed,
or the body size distribution could be estimated
independently for each sex. In this latter case,
body size would be informative about any miss-
ing sex covariates.
We added categorical covariates to the

unmarked SCR model, but categorical identity
covariates can also be added to SMR, 2-flank
SPIM, and likely other types of specialized SPIMs
that may not have been developed yet. Combin-
ing the categorical SPIM with SMR is especially
appealing because it would allow all of the fea-
tures currently available to improve density esti-
mates over unmarked SCR to be combined into a
single model that can accommodate a subset of
marked individuals, individual-linked telemetry
data, a marking process capture history, and cate-
gorical identity covariates. Further, this develop-
ment will be required to address researcher-
deployed categorical marks, such as colored ear
tags and collars, because only the “marked” sub-
set of individuals are categorically marked and
the number of deployed marks of each type may
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be known or perhaps the maximum number may
be known if there is tag loss, requiring a more
constrained MCMC algorithm for updating the
latent individual identities. Another possible
extension would be to allow continuous identity
covariates, such as body size, perhaps measured
with error, in a more general “covariate SPIM.”
One continuous covariate of particular ecological
relevance that is informative of identity is the time
a sample was recorded, with samples collected
closer together in time at the same location being
more likely to have been produced by the same
individual. However, making use of the time of
sample deposition would require a model for ani-
mal movement and is probably less informative
than spatial location, unless r is large relative to
the trapping array and movement speed rela-
tively slow.

While our application and much of the discus-
sion focuses on the use of microsatellite loci as
categorical identity covariates, other observation
systems provide categorical identity covariates that
can be used by the categorical SPIM. Remote cam-
eras, for example, sometimes provide individual
sex, age class, color morph, natural markings, and/
or other morphological features (Villafa~ne-Trujillo
et al. 2018). Some species such as mustelids (Royle
et al. 2011, Sir�en et al. 2016, Villafa~ne-Trujillo
et al. 2018) and Andean bears (Tremarctos ornatus;
Molina et al. 2017) have markings on the chest,
head, and neck, that can be used to classify unique
individuals. We suspect categorical and/or contin-
uous covariates can be extracted from these types
of observations that would allow this identifying
information to be used without having to assign a
unique identity with certainty, which could be
erroneous if two individuals shared the same
markings, or to include the photographs that were
not distinct enough to provide a unique identity. A
second observation method with potentially abun-
dant partially identifying information is bioacous-
tic monitoring where covariates such as note
duration, bandwidth, and frequency can be
extracted from the spectrograms of individual calls
(Reby et al. 1999, McIntosh et al. 2015, Clink et al.
2017), which could improve density estimation for
a large number of species that are difficult to detect
by methods other than bioacoustics. Finally, in
addition to the possible ways we envision the cate-
gorical SPIM may be used outlined in this paper, it
may allow for better density estimation for

currently used observation systems we are not
aware of, or may spur the adoption of new ways
of categorically marking species for which unique
marks are not currently available once researchers
are aware that density can be estimated using
the information contained in categorical marks.
Unique marks will always be the most informa-
tive, but the categorical SPIM offers a middle
ground between uniquely marked and unmarked
populations.
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